// Copyright 2020 Kentaro Hibino. All rights reserved. // Use of this source code is governed by a MIT license // that can be found in the LICENSE file. // Package rdb encapsulates the interactions with redis. package rdb import ( "context" "fmt" "math" "time" "github.com/google/uuid" "github.com/hibiken/asynq/internal/base" "github.com/hibiken/asynq/internal/errors" "github.com/hibiken/asynq/internal/timeutil" "github.com/redis/go-redis/v9" "github.com/spf13/cast" ) const statsTTL = 90 * 24 * time.Hour // 90 days // LeaseDuration is the duration used to initially create a lease and to extend it thereafter. const LeaseDuration = 30 * time.Second type Option func(r *RDB) func WithQueueConcurrency(queueConcurrency map[string]int) Option { return func(r *RDB) { r.queueConcurrency = queueConcurrency } } // RDB is a client interface to query and mutate task queues. type RDB struct { client redis.UniversalClient clock timeutil.Clock queueConcurrency map[string]int } // NewRDB returns a new instance of RDB. func NewRDB(client redis.UniversalClient, opts ...Option) *RDB { r := &RDB{ client: client, clock: timeutil.NewRealClock(), } for _, opt := range opts { opt(r) } return r } // Close closes the connection with redis server. func (r *RDB) Close() error { return r.client.Close() } // Client returns the reference to underlying redis client. func (r *RDB) Client() redis.UniversalClient { return r.client } // SetClock sets the clock used by RDB to the given clock. // // Use this function to set the clock to SimulatedClock in tests. func (r *RDB) SetClock(c timeutil.Clock) { r.clock = c } // Ping checks the connection with redis server. func (r *RDB) Ping() error { return r.client.Ping(context.Background()).Err() } func (r *RDB) runScript(ctx context.Context, op errors.Op, script *redis.Script, keys []string, args ...interface{}) error { if err := script.Run(ctx, r.client, keys, args...).Err(); err != nil { return errors.E(op, errors.Internal, fmt.Sprintf("redis eval error: %v", err)) } return nil } // Runs the given script with keys and args and returns the script's return value as int64. func (r *RDB) runScriptWithErrorCode(ctx context.Context, op errors.Op, script *redis.Script, keys []string, args ...interface{}) (int64, error) { res, err := script.Run(ctx, r.client, keys, args...).Result() if err != nil { return 0, errors.E(op, errors.Unknown, fmt.Sprintf("redis eval error: %v", err)) } n, ok := res.(int64) if !ok { return 0, errors.E(op, errors.Internal, fmt.Sprintf("unexpected return value from Lua script: %v", res)) } return n, nil } // enqueueCmd enqueues a given task message. // // Input: // KEYS[1] -> asynq:{}:t: // KEYS[2] -> asynq:{}:pending // -- // ARGV[1] -> task message data // ARGV[2] -> task ID // ARGV[3] -> current unix time in nsec // // Output: // Returns 1 if successfully enqueued // Returns 0 if task ID already exists var enqueueCmd = redis.NewScript(` if redis.call("EXISTS", KEYS[1]) == 1 then return 0 end redis.call("HSET", KEYS[1], "msg", ARGV[1], "state", "pending", "pending_since", ARGV[3]) redis.call("LPUSH", KEYS[2], ARGV[2]) return 1 `) // Enqueue adds the given task to the pending list of the queue. func (r *RDB) Enqueue(ctx context.Context, msg *base.TaskMessage) error { var op errors.Op = "rdb.Enqueue" encoded, err := base.EncodeMessage(msg) if err != nil { return errors.E(op, errors.Unknown, fmt.Sprintf("cannot encode message: %v", err)) } if err := r.client.SAdd(ctx, base.AllQueues, msg.Queue).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "sadd", Err: err}) } keys := []string{ base.TaskKey(msg.Queue, msg.ID), base.PendingKey(msg.Queue), } argv := []interface{}{ encoded, msg.ID, r.clock.Now().UnixNano(), } n, err := r.runScriptWithErrorCode(ctx, op, enqueueCmd, keys, argv...) if err != nil { return err } if n == 0 { return errors.E(op, errors.AlreadyExists, errors.ErrTaskIdConflict) } return nil } // enqueueUniqueCmd enqueues the task message if the task is unique. // // KEYS[1] -> unique key // KEYS[2] -> asynq:{}:t: // KEYS[3] -> asynq:{}:pending // -- // ARGV[1] -> task ID // ARGV[2] -> uniqueness lock TTL // ARGV[3] -> task message data // ARGV[4] -> current unix time in nsec // // Output: // Returns 1 if successfully enqueued // Returns 0 if task ID conflicts with another task // Returns -1 if task unique key already exists var enqueueUniqueCmd = redis.NewScript(` local ok = redis.call("SET", KEYS[1], ARGV[1], "NX", "EX", ARGV[2]) if not ok then return -1 end if redis.call("EXISTS", KEYS[2]) == 1 then return 0 end redis.call("HSET", KEYS[2], "msg", ARGV[3], "state", "pending", "pending_since", ARGV[4], "unique_key", KEYS[1]) redis.call("LPUSH", KEYS[3], ARGV[1]) return 1 `) // EnqueueUnique inserts the given task if the task's uniqueness lock can be acquired. // It returns ErrDuplicateTask if the lock cannot be acquired. func (r *RDB) EnqueueUnique(ctx context.Context, msg *base.TaskMessage, ttl time.Duration) error { var op errors.Op = "rdb.EnqueueUnique" encoded, err := base.EncodeMessage(msg) if err != nil { return errors.E(op, errors.Internal, "cannot encode task message: %v", err) } if err := r.client.SAdd(ctx, base.AllQueues, msg.Queue).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "sadd", Err: err}) } keys := []string{ msg.UniqueKey, base.TaskKey(msg.Queue, msg.ID), base.PendingKey(msg.Queue), } argv := []interface{}{ msg.ID, int(ttl.Seconds()), encoded, r.clock.Now().UnixNano(), } n, err := r.runScriptWithErrorCode(ctx, op, enqueueUniqueCmd, keys, argv...) if err != nil { return err } if n == -1 { return errors.E(op, errors.AlreadyExists, errors.ErrDuplicateTask) } if n == 0 { return errors.E(op, errors.AlreadyExists, errors.ErrTaskIdConflict) } return nil } // Input: // KEYS[1] -> asynq:{}:pending // KEYS[2] -> asynq:{}:paused // KEYS[3] -> asynq:{}:active // KEYS[4] -> asynq:{}:lease // -- // ARGV[1] -> initial lease expiration Unix time // ARGV[2] -> task key prefix // ARGV[3] -> queue concurrency // // Output: // Returns nil if no processable task is found in the given queue. // Returns an encoded TaskMessage. // // Note: dequeueCmd checks whether a queue is paused first, before // calling RPOPLPUSH to pop a task from the queue. var dequeueCmd = redis.NewScript(` if redis.call("EXISTS", KEYS[2]) > 0 then return nil end local count = redis.call("ZCARD", KEYS[4]) if (count >= tonumber(ARGV[3])) then return nil end local id = redis.call("RPOPLPUSH", KEYS[1], KEYS[3]) if id then local key = ARGV[2] .. id redis.call("HSET", key, "state", "active") redis.call("HDEL", key, "pending_since") redis.call("ZADD", KEYS[4], ARGV[1], id) return redis.call("HGET", key, "msg") end return nil`) // Dequeue queries given queues in order and pops a task message // off a queue if one exists and returns the message and its lease expiration time. // Dequeue skips a queue if the queue is paused. // If all queues are empty, ErrNoProcessableTask error is returned. func (r *RDB) Dequeue(qnames ...string) (msg *base.TaskMessage, leaseExpirationTime time.Time, err error) { var op errors.Op = "rdb.Dequeue" for _, qname := range qnames { keys := []string{ base.PendingKey(qname), base.PausedKey(qname), base.ActiveKey(qname), base.LeaseKey(qname), } leaseExpirationTime = r.clock.Now().Add(LeaseDuration) queueConcurrency, ok := r.queueConcurrency[qname] if !ok || queueConcurrency <= 0 { queueConcurrency = math.MaxInt } argv := []interface{}{ leaseExpirationTime.Unix(), base.TaskKeyPrefix(qname), queueConcurrency, } res, err := dequeueCmd.Run(context.Background(), r.client, keys, argv...).Result() if err == redis.Nil { continue } else if err != nil { return nil, time.Time{}, errors.E(op, errors.Unknown, fmt.Sprintf("redis eval error: %v", err)) } encoded, err := cast.ToStringE(res) if err != nil { return nil, time.Time{}, errors.E(op, errors.Internal, fmt.Sprintf("cast error: unexpected return value from Lua script: %v", res)) } if msg, err = base.DecodeMessage([]byte(encoded)); err != nil { return nil, time.Time{}, errors.E(op, errors.Internal, fmt.Sprintf("cannot decode message: %v", err)) } return msg, leaseExpirationTime, nil } return nil, time.Time{}, errors.E(op, errors.NotFound, errors.ErrNoProcessableTask) } // KEYS[1] -> asynq:{}:active // KEYS[2] -> asynq:{}:lease // KEYS[3] -> asynq:{}:t: // KEYS[4] -> asynq:{}:processed: // KEYS[5] -> asynq:{}:processed // ------- // ARGV[1] -> task ID // ARGV[2] -> stats expiration timestamp // ARGV[3] -> max int64 value var doneCmd = redis.NewScript(` if redis.call("LREM", KEYS[1], 0, ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZREM", KEYS[2], ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("DEL", KEYS[3]) == 0 then return redis.error_reply("NOT FOUND") end local n = redis.call("INCR", KEYS[4]) if tonumber(n) == 1 then redis.call("EXPIREAT", KEYS[4], ARGV[2]) end local total = redis.call("GET", KEYS[5]) if tonumber(total) == tonumber(ARGV[3]) then redis.call("SET", KEYS[5], 1) else redis.call("INCR", KEYS[5]) end return redis.status_reply("OK") `) // KEYS[1] -> asynq:{}:active // KEYS[2] -> asynq:{}:lease // KEYS[3] -> asynq:{}:t: // KEYS[4] -> asynq:{}:processed: // KEYS[5] -> asynq:{}:processed // KEYS[6] -> unique key // ------- // ARGV[1] -> task ID // ARGV[2] -> stats expiration timestamp // ARGV[3] -> max int64 value var doneUniqueCmd = redis.NewScript(` if redis.call("LREM", KEYS[1], 0, ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZREM", KEYS[2], ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("DEL", KEYS[3]) == 0 then return redis.error_reply("NOT FOUND") end local n = redis.call("INCR", KEYS[4]) if tonumber(n) == 1 then redis.call("EXPIREAT", KEYS[4], ARGV[2]) end local total = redis.call("GET", KEYS[5]) if tonumber(total) == tonumber(ARGV[3]) then redis.call("SET", KEYS[5], 1) else redis.call("INCR", KEYS[5]) end if redis.call("GET", KEYS[6]) == ARGV[1] then redis.call("DEL", KEYS[6]) end return redis.status_reply("OK") `) // Done removes the task from active queue and deletes the task. // It removes a uniqueness lock acquired by the task, if any. func (r *RDB) Done(ctx context.Context, msg *base.TaskMessage) error { var op errors.Op = "rdb.Done" now := r.clock.Now() expireAt := now.Add(statsTTL) keys := []string{ base.ActiveKey(msg.Queue), base.LeaseKey(msg.Queue), base.TaskKey(msg.Queue, msg.ID), base.ProcessedKey(msg.Queue, now), base.ProcessedTotalKey(msg.Queue), } argv := []interface{}{ msg.ID, expireAt.Unix(), int64(math.MaxInt64), } // Note: We cannot pass empty unique key when running this script in redis-cluster. if len(msg.UniqueKey) > 0 { keys = append(keys, msg.UniqueKey) return r.runScript(ctx, op, doneUniqueCmd, keys, argv...) } return r.runScript(ctx, op, doneCmd, keys, argv...) } // KEYS[1] -> asynq:{}:active // KEYS[2] -> asynq:{}:lease // KEYS[3] -> asynq:{}:completed // KEYS[4] -> asynq:{}:t: // KEYS[5] -> asynq:{}:processed: // KEYS[6] -> asynq:{}:processed // // ARGV[1] -> task ID // ARGV[2] -> stats expiration timestamp // ARGV[3] -> task expiration time in unix time // ARGV[4] -> task message data // ARGV[5] -> max int64 value var markAsCompleteCmd = redis.NewScript(` if redis.call("LREM", KEYS[1], 0, ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZREM", KEYS[2], ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZADD", KEYS[3], ARGV[3], ARGV[1]) ~= 1 then return redis.error_reply("INTERNAL") end redis.call("HSET", KEYS[4], "msg", ARGV[4], "state", "completed") local n = redis.call("INCR", KEYS[5]) if tonumber(n) == 1 then redis.call("EXPIREAT", KEYS[5], ARGV[2]) end local total = redis.call("GET", KEYS[6]) if tonumber(total) == tonumber(ARGV[5]) then redis.call("SET", KEYS[6], 1) else redis.call("INCR", KEYS[6]) end return redis.status_reply("OK") `) // KEYS[1] -> asynq:{}:active // KEYS[2] -> asynq:{}:lease // KEYS[3] -> asynq:{}:completed // KEYS[4] -> asynq:{}:t: // KEYS[5] -> asynq:{}:processed: // KEYS[6] -> asynq:{}:processed // KEYS[7] -> asynq:{}:unique:{} // // ARGV[1] -> task ID // ARGV[2] -> stats expiration timestamp // ARGV[3] -> task expiration time in unix time // ARGV[4] -> task message data // ARGV[5] -> max int64 value var markAsCompleteUniqueCmd = redis.NewScript(` if redis.call("LREM", KEYS[1], 0, ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZREM", KEYS[2], ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZADD", KEYS[3], ARGV[3], ARGV[1]) ~= 1 then return redis.error_reply("INTERNAL") end redis.call("HSET", KEYS[4], "msg", ARGV[4], "state", "completed") local n = redis.call("INCR", KEYS[5]) if tonumber(n) == 1 then redis.call("EXPIREAT", KEYS[5], ARGV[2]) end local total = redis.call("GET", KEYS[6]) if tonumber(total) == tonumber(ARGV[5]) then redis.call("SET", KEYS[6], 1) else redis.call("INCR", KEYS[6]) end if redis.call("GET", KEYS[7]) == ARGV[1] then redis.call("DEL", KEYS[7]) end return redis.status_reply("OK") `) // MarkAsComplete removes the task from active queue to mark the task as completed. // It removes a uniqueness lock acquired by the task, if any. func (r *RDB) MarkAsComplete(ctx context.Context, msg *base.TaskMessage) error { var op errors.Op = "rdb.MarkAsComplete" now := r.clock.Now() statsExpireAt := now.Add(statsTTL) msg.CompletedAt = now.Unix() encoded, err := base.EncodeMessage(msg) if err != nil { return errors.E(op, errors.Unknown, fmt.Sprintf("cannot encode message: %v", err)) } keys := []string{ base.ActiveKey(msg.Queue), base.LeaseKey(msg.Queue), base.CompletedKey(msg.Queue), base.TaskKey(msg.Queue, msg.ID), base.ProcessedKey(msg.Queue, now), base.ProcessedTotalKey(msg.Queue), } argv := []interface{}{ msg.ID, statsExpireAt.Unix(), now.Unix() + msg.Retention, encoded, int64(math.MaxInt64), } // Note: We cannot pass empty unique key when running this script in redis-cluster. if len(msg.UniqueKey) > 0 { keys = append(keys, msg.UniqueKey) return r.runScript(ctx, op, markAsCompleteUniqueCmd, keys, argv...) } return r.runScript(ctx, op, markAsCompleteCmd, keys, argv...) } // KEYS[1] -> asynq:{}:active // KEYS[2] -> asynq:{}:lease // KEYS[3] -> asynq:{}:pending // KEYS[4] -> asynq:{}:t: // ARGV[1] -> task ID // Note: Use RPUSH to push to the head of the queue. var requeueCmd = redis.NewScript(` if redis.call("LREM", KEYS[1], 0, ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZREM", KEYS[2], ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end redis.call("RPUSH", KEYS[3], ARGV[1]) redis.call("HSET", KEYS[4], "state", "pending") return redis.status_reply("OK")`) // Requeue moves the task from active queue to the specified queue. func (r *RDB) Requeue(ctx context.Context, msg *base.TaskMessage) error { var op errors.Op = "rdb.Requeue" keys := []string{ base.ActiveKey(msg.Queue), base.LeaseKey(msg.Queue), base.PendingKey(msg.Queue), base.TaskKey(msg.Queue, msg.ID), } return r.runScript(ctx, op, requeueCmd, keys, msg.ID) } // KEYS[1] -> asynq:{}:t: // KEYS[2] -> asynq:{}:g: // KEYS[3] -> asynq:{}:groups // ------- // ARGV[1] -> task message data // ARGV[2] -> task ID // ARGV[3] -> current time in Unix time // ARGV[4] -> group key // // Output: // Returns 1 if successfully added // Returns 0 if task ID already exists var addToGroupCmd = redis.NewScript(` if redis.call("EXISTS", KEYS[1]) == 1 then return 0 end redis.call("HSET", KEYS[1], "msg", ARGV[1], "state", "aggregating", "group", ARGV[4]) redis.call("ZADD", KEYS[2], ARGV[3], ARGV[2]) redis.call("SADD", KEYS[3], ARGV[4]) return 1 `) func (r *RDB) AddToGroup(ctx context.Context, msg *base.TaskMessage, groupKey string) error { var op errors.Op = "rdb.AddToGroup" encoded, err := base.EncodeMessage(msg) if err != nil { return errors.E(op, errors.Unknown, fmt.Sprintf("cannot encode message: %v", err)) } if err := r.client.SAdd(ctx, base.AllQueues, msg.Queue).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "sadd", Err: err}) } keys := []string{ base.TaskKey(msg.Queue, msg.ID), base.GroupKey(msg.Queue, groupKey), base.AllGroups(msg.Queue), } argv := []interface{}{ encoded, msg.ID, r.clock.Now().Unix(), groupKey, } n, err := r.runScriptWithErrorCode(ctx, op, addToGroupCmd, keys, argv...) if err != nil { return err } if n == 0 { return errors.E(op, errors.AlreadyExists, errors.ErrTaskIdConflict) } return nil } // KEYS[1] -> asynq:{}:t: // KEYS[2] -> asynq:{}:g: // KEYS[3] -> asynq:{}:groups // KEYS[4] -> unique key // ------- // ARGV[1] -> task message data // ARGV[2] -> task ID // ARGV[3] -> current time in Unix time // ARGV[4] -> group key // ARGV[5] -> uniqueness lock TTL // // Output: // Returns 1 if successfully added // Returns 0 if task ID already exists // Returns -1 if task unique key already exists var addToGroupUniqueCmd = redis.NewScript(` local ok = redis.call("SET", KEYS[4], ARGV[2], "NX", "EX", ARGV[5]) if not ok then return -1 end if redis.call("EXISTS", KEYS[1]) == 1 then return 0 end redis.call("HSET", KEYS[1], "msg", ARGV[1], "state", "aggregating", "group", ARGV[4]) redis.call("ZADD", KEYS[2], ARGV[3], ARGV[2]) redis.call("SADD", KEYS[3], ARGV[4]) return 1 `) func (r *RDB) AddToGroupUnique(ctx context.Context, msg *base.TaskMessage, groupKey string, ttl time.Duration) error { var op errors.Op = "rdb.AddToGroupUnique" encoded, err := base.EncodeMessage(msg) if err != nil { return errors.E(op, errors.Unknown, fmt.Sprintf("cannot encode message: %v", err)) } if err := r.client.SAdd(ctx, base.AllQueues, msg.Queue).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "sadd", Err: err}) } keys := []string{ base.TaskKey(msg.Queue, msg.ID), base.GroupKey(msg.Queue, groupKey), base.AllGroups(msg.Queue), base.UniqueKey(msg.Queue, msg.Type, msg.Payload), } argv := []interface{}{ encoded, msg.ID, r.clock.Now().Unix(), groupKey, int(ttl.Seconds()), } n, err := r.runScriptWithErrorCode(ctx, op, addToGroupUniqueCmd, keys, argv...) if err != nil { return err } if n == -1 { return errors.E(op, errors.AlreadyExists, errors.ErrDuplicateTask) } if n == 0 { return errors.E(op, errors.AlreadyExists, errors.ErrTaskIdConflict) } return nil } // KEYS[1] -> asynq:{}:t: // KEYS[2] -> asynq:{}:scheduled // ------- // ARGV[1] -> task message data // ARGV[2] -> process_at time in Unix time // ARGV[3] -> task ID // // Output: // Returns 1 if successfully enqueued // Returns 0 if task ID already exists var scheduleCmd = redis.NewScript(` if redis.call("EXISTS", KEYS[1]) == 1 then return 0 end redis.call("HSET", KEYS[1], "msg", ARGV[1], "state", "scheduled") redis.call("ZADD", KEYS[2], ARGV[2], ARGV[3]) return 1 `) // Schedule adds the task to the scheduled set to be processed in the future. func (r *RDB) Schedule(ctx context.Context, msg *base.TaskMessage, processAt time.Time) error { var op errors.Op = "rdb.Schedule" encoded, err := base.EncodeMessage(msg) if err != nil { return errors.E(op, errors.Unknown, fmt.Sprintf("cannot encode message: %v", err)) } if err := r.client.SAdd(ctx, base.AllQueues, msg.Queue).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "sadd", Err: err}) } keys := []string{ base.TaskKey(msg.Queue, msg.ID), base.ScheduledKey(msg.Queue), } argv := []interface{}{ encoded, processAt.Unix(), msg.ID, } n, err := r.runScriptWithErrorCode(ctx, op, scheduleCmd, keys, argv...) if err != nil { return err } if n == 0 { return errors.E(op, errors.AlreadyExists, errors.ErrTaskIdConflict) } return nil } // KEYS[1] -> unique key // KEYS[2] -> asynq:{}:t: // KEYS[3] -> asynq:{}:scheduled // ------- // ARGV[1] -> task ID // ARGV[2] -> uniqueness lock TTL // ARGV[3] -> score (process_at timestamp) // ARGV[4] -> task message // // Output: // Returns 1 if successfully scheduled // Returns 0 if task ID already exists // Returns -1 if task unique key already exists var scheduleUniqueCmd = redis.NewScript(` local ok = redis.call("SET", KEYS[1], ARGV[1], "NX", "EX", ARGV[2]) if not ok then return -1 end if redis.call("EXISTS", KEYS[2]) == 1 then return 0 end redis.call("HSET", KEYS[2], "msg", ARGV[4], "state", "scheduled", "unique_key", KEYS[1]) redis.call("ZADD", KEYS[3], ARGV[3], ARGV[1]) return 1 `) // ScheduleUnique adds the task to the backlog queue to be processed in the future if the uniqueness lock can be acquired. // It returns ErrDuplicateTask if the lock cannot be acquired. func (r *RDB) ScheduleUnique(ctx context.Context, msg *base.TaskMessage, processAt time.Time, ttl time.Duration) error { var op errors.Op = "rdb.ScheduleUnique" encoded, err := base.EncodeMessage(msg) if err != nil { return errors.E(op, errors.Internal, fmt.Sprintf("cannot encode task message: %v", err)) } if err := r.client.SAdd(ctx, base.AllQueues, msg.Queue).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "sadd", Err: err}) } keys := []string{ msg.UniqueKey, base.TaskKey(msg.Queue, msg.ID), base.ScheduledKey(msg.Queue), } argv := []interface{}{ msg.ID, int(ttl.Seconds()), processAt.Unix(), encoded, } n, err := r.runScriptWithErrorCode(ctx, op, scheduleUniqueCmd, keys, argv...) if err != nil { return err } if n == -1 { return errors.E(op, errors.AlreadyExists, errors.ErrDuplicateTask) } if n == 0 { return errors.E(op, errors.AlreadyExists, errors.ErrTaskIdConflict) } return nil } // KEYS[1] -> asynq:{}:t: // KEYS[2] -> asynq:{}:active // KEYS[3] -> asynq:{}:lease // KEYS[4] -> asynq:{}:retry // KEYS[5] -> asynq:{}:processed: // KEYS[6] -> asynq:{}:failed: // KEYS[7] -> asynq:{}:processed // KEYS[8] -> asynq:{}:failed // ------- // ARGV[1] -> task ID // ARGV[2] -> updated base.TaskMessage value // ARGV[3] -> retry_at UNIX timestamp // ARGV[4] -> stats expiration timestamp // ARGV[5] -> is_failure (bool) // ARGV[6] -> max int64 value var retryCmd = redis.NewScript(` if redis.call("LREM", KEYS[2], 0, ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZREM", KEYS[3], ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end redis.call("ZADD", KEYS[4], ARGV[3], ARGV[1]) redis.call("HSET", KEYS[1], "msg", ARGV[2], "state", "retry") if tonumber(ARGV[5]) == 1 then local n = redis.call("INCR", KEYS[5]) if tonumber(n) == 1 then redis.call("EXPIREAT", KEYS[5], ARGV[4]) end local m = redis.call("INCR", KEYS[6]) if tonumber(m) == 1 then redis.call("EXPIREAT", KEYS[6], ARGV[4]) end local total = redis.call("GET", KEYS[7]) if tonumber(total) == tonumber(ARGV[6]) then redis.call("SET", KEYS[7], 1) redis.call("SET", KEYS[8], 1) else redis.call("INCR", KEYS[7]) redis.call("INCR", KEYS[8]) end end return redis.status_reply("OK")`) // Retry moves the task from active to retry queue. // It also annotates the message with the given error message and // if isFailure is true increments the retried counter. func (r *RDB) Retry(ctx context.Context, msg *base.TaskMessage, processAt time.Time, errMsg string, isFailure bool) error { var op errors.Op = "rdb.Retry" now := r.clock.Now() modified := *msg if isFailure { modified.Retried++ } modified.ErrorMsg = errMsg modified.LastFailedAt = now.Unix() encoded, err := base.EncodeMessage(&modified) if err != nil { return errors.E(op, errors.Internal, fmt.Sprintf("cannot encode message: %v", err)) } expireAt := now.Add(statsTTL) keys := []string{ base.TaskKey(msg.Queue, msg.ID), base.ActiveKey(msg.Queue), base.LeaseKey(msg.Queue), base.RetryKey(msg.Queue), base.ProcessedKey(msg.Queue, now), base.FailedKey(msg.Queue, now), base.ProcessedTotalKey(msg.Queue), base.FailedTotalKey(msg.Queue), } argv := []interface{}{ msg.ID, encoded, processAt.Unix(), expireAt.Unix(), isFailure, int64(math.MaxInt64), } return r.runScript(ctx, op, retryCmd, keys, argv...) } const ( maxArchiveSize = 10000 // maximum number of tasks in archive archivedExpirationInDays = 90 // number of days before an archived task gets deleted permanently ) // KEYS[1] -> asynq:{}:t: // KEYS[2] -> asynq:{}:active // KEYS[3] -> asynq:{}:lease // KEYS[4] -> asynq:{}:archived // KEYS[5] -> asynq:{}:processed: // KEYS[6] -> asynq:{}:failed: // KEYS[7] -> asynq:{}:processed // KEYS[8] -> asynq:{}:failed // ------- // ARGV[1] -> task ID // ARGV[2] -> updated base.TaskMessage value // ARGV[3] -> died_at UNIX timestamp // ARGV[4] -> cutoff timestamp (e.g., 90 days ago) // ARGV[5] -> max number of tasks in archive (e.g., 100) // ARGV[6] -> stats expiration timestamp // ARGV[7] -> max int64 value var archiveCmd = redis.NewScript(` if redis.call("LREM", KEYS[2], 0, ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end if redis.call("ZREM", KEYS[3], ARGV[1]) == 0 then return redis.error_reply("NOT FOUND") end redis.call("ZADD", KEYS[4], ARGV[3], ARGV[1]) redis.call("ZREMRANGEBYSCORE", KEYS[4], "-inf", ARGV[4]) redis.call("ZREMRANGEBYRANK", KEYS[4], 0, -ARGV[5]) redis.call("HSET", KEYS[1], "msg", ARGV[2], "state", "archived") local n = redis.call("INCR", KEYS[5]) if tonumber(n) == 1 then redis.call("EXPIREAT", KEYS[5], ARGV[6]) end local m = redis.call("INCR", KEYS[6]) if tonumber(m) == 1 then redis.call("EXPIREAT", KEYS[6], ARGV[6]) end local total = redis.call("GET", KEYS[7]) if tonumber(total) == tonumber(ARGV[7]) then redis.call("SET", KEYS[7], 1) redis.call("SET", KEYS[8], 1) else redis.call("INCR", KEYS[7]) redis.call("INCR", KEYS[8]) end return redis.status_reply("OK")`) // Archive sends the given task to archive, attaching the error message to the task. // It also trims the archive by timestamp and set size. func (r *RDB) Archive(ctx context.Context, msg *base.TaskMessage, errMsg string) error { var op errors.Op = "rdb.Archive" now := r.clock.Now() modified := *msg modified.ErrorMsg = errMsg modified.LastFailedAt = now.Unix() encoded, err := base.EncodeMessage(&modified) if err != nil { return errors.E(op, errors.Internal, fmt.Sprintf("cannot encode message: %v", err)) } cutoff := now.AddDate(0, 0, -archivedExpirationInDays) expireAt := now.Add(statsTTL) keys := []string{ base.TaskKey(msg.Queue, msg.ID), base.ActiveKey(msg.Queue), base.LeaseKey(msg.Queue), base.ArchivedKey(msg.Queue), base.ProcessedKey(msg.Queue, now), base.FailedKey(msg.Queue, now), base.ProcessedTotalKey(msg.Queue), base.FailedTotalKey(msg.Queue), } argv := []interface{}{ msg.ID, encoded, now.Unix(), cutoff.Unix(), maxArchiveSize, expireAt.Unix(), int64(math.MaxInt64), } return r.runScript(ctx, op, archiveCmd, keys, argv...) } // ForwardIfReady checks scheduled and retry sets of the given queues // and move any tasks that are ready to be processed to the pending set. func (r *RDB) ForwardIfReady(qnames ...string) error { var op errors.Op = "rdb.ForwardIfReady" for _, qname := range qnames { if err := r.forwardAll(qname); err != nil { return errors.E(op, errors.CanonicalCode(err), err) } } return nil } // KEYS[1] -> source queue (e.g. asynq:{:scheduled or asynq:{}:retry}) // KEYS[2] -> asynq:{}:pending // ARGV[1] -> current unix time in seconds // ARGV[2] -> task key prefix // ARGV[3] -> current unix time in nsec // ARGV[4] -> group key prefix // Note: Script moves tasks up to 100 at a time to keep the runtime of script short. var forwardCmd = redis.NewScript(` local ids = redis.call("ZRANGEBYSCORE", KEYS[1], "-inf", ARGV[1], "LIMIT", 0, 100) for _, id in ipairs(ids) do local taskKey = ARGV[2] .. id local group = redis.call("HGET", taskKey, "group") if group and group ~= '' then redis.call("ZADD", ARGV[4] .. group, ARGV[1], id) redis.call("ZREM", KEYS[1], id) redis.call("HSET", taskKey, "state", "aggregating") else redis.call("LPUSH", KEYS[2], id) redis.call("ZREM", KEYS[1], id) redis.call("HSET", taskKey, "state", "pending", "pending_since", ARGV[3]) end end return table.getn(ids)`) // forward moves tasks with a score less than the current unix time from the delayed (i.e. scheduled | retry) zset // to the pending list or group set. // It returns the number of tasks moved. func (r *RDB) forward(delayedKey, pendingKey, taskKeyPrefix, groupKeyPrefix string) (int, error) { now := r.clock.Now() keys := []string{delayedKey, pendingKey} argv := []interface{}{ now.Unix(), taskKeyPrefix, now.UnixNano(), groupKeyPrefix, } res, err := forwardCmd.Run(context.Background(), r.client, keys, argv...).Result() if err != nil { return 0, errors.E(errors.Internal, fmt.Sprintf("redis eval error: %v", err)) } n, err := cast.ToIntE(res) if err != nil { return 0, errors.E(errors.Internal, fmt.Sprintf("cast error: Lua script returned unexpected value: %v", res)) } return n, nil } // forwardAll checks for tasks in scheduled/retry state that are ready to be run, and updates // their state to "pending" or "aggregating". func (r *RDB) forwardAll(qname string) (err error) { delayedKeys := []string{base.ScheduledKey(qname), base.RetryKey(qname)} pendingKey := base.PendingKey(qname) taskKeyPrefix := base.TaskKeyPrefix(qname) groupKeyPrefix := base.GroupKeyPrefix(qname) for _, delayedKey := range delayedKeys { n := 1 for n != 0 { n, err = r.forward(delayedKey, pendingKey, taskKeyPrefix, groupKeyPrefix) if err != nil { return err } } } return nil } // ListGroups returns a list of all known groups in the given queue. func (r *RDB) ListGroups(qname string) ([]string, error) { var op errors.Op = "RDB.ListGroups" groups, err := r.client.SMembers(context.Background(), base.AllGroups(qname)).Result() if err != nil { return nil, errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "smembers", Err: err}) } return groups, nil } // aggregationCheckCmd checks the given group for whether to create an aggregation set. // An aggregation set is created if one of the aggregation criteria is met: // 1) group has reached or exceeded its max size // 2) group's oldest task has reached or exceeded its max delay // 3) group's latest task has reached or exceeded its grace period // if aggreation criteria is met, the command moves those tasks from the group // and put them in an aggregation set. Additionally, if the creation of aggregation set // empties the group, it will clear the group name from the all groups set. // // KEYS[1] -> asynq:{}:g: // KEYS[2] -> asynq:{}:g:: // KEYS[3] -> asynq:{}:aggregation_sets // KEYS[4] -> asynq:{}:groups // ------- // ARGV[1] -> max group size // ARGV[2] -> max group delay in unix time // ARGV[3] -> start time of the grace period // ARGV[4] -> aggregation set expire time // ARGV[5] -> current time in unix time // ARGV[6] -> group name // // Output: // Returns 0 if no aggregation set was created // Returns 1 if an aggregation set was created // // Time Complexity: // O(log(N) + M) with N being the number tasks in the group zset // and M being the max size. var aggregationCheckCmd = redis.NewScript(` local size = redis.call("ZCARD", KEYS[1]) if size == 0 then return 0 end local maxSize = tonumber(ARGV[1]) if maxSize ~= 0 and size >= maxSize then local res = redis.call("ZRANGE", KEYS[1], 0, maxSize-1, "WITHSCORES") for i=1, table.getn(res)-1, 2 do redis.call("ZADD", KEYS[2], tonumber(res[i+1]), res[i]) end redis.call("ZREMRANGEBYRANK", KEYS[1], 0, maxSize-1) redis.call("ZADD", KEYS[3], ARGV[4], KEYS[2]) if size == maxSize then redis.call("SREM", KEYS[4], ARGV[6]) end return 1 end local maxDelay = tonumber(ARGV[2]) local currentTime = tonumber(ARGV[5]) if maxDelay ~= 0 then local oldestEntry = redis.call("ZRANGE", KEYS[1], 0, 0, "WITHSCORES") local oldestEntryScore = tonumber(oldestEntry[2]) local maxDelayTime = currentTime - maxDelay if oldestEntryScore <= maxDelayTime then local res = redis.call("ZRANGE", KEYS[1], 0, maxSize-1, "WITHSCORES") for i=1, table.getn(res)-1, 2 do redis.call("ZADD", KEYS[2], tonumber(res[i+1]), res[i]) end redis.call("ZREMRANGEBYRANK", KEYS[1], 0, maxSize-1) redis.call("ZADD", KEYS[3], ARGV[4], KEYS[2]) if size <= maxSize or maxSize == 0 then redis.call("SREM", KEYS[4], ARGV[6]) end return 1 end end local latestEntry = redis.call("ZREVRANGE", KEYS[1], 0, 0, "WITHSCORES") local latestEntryScore = tonumber(latestEntry[2]) local gracePeriodStartTime = currentTime - tonumber(ARGV[3]) if latestEntryScore <= gracePeriodStartTime then local res = redis.call("ZRANGE", KEYS[1], 0, maxSize-1, "WITHSCORES") for i=1, table.getn(res)-1, 2 do redis.call("ZADD", KEYS[2], tonumber(res[i+1]), res[i]) end redis.call("ZREMRANGEBYRANK", KEYS[1], 0, maxSize-1) redis.call("ZADD", KEYS[3], ARGV[4], KEYS[2]) if size <= maxSize or maxSize == 0 then redis.call("SREM", KEYS[4], ARGV[6]) end return 1 end return 0 `) // Task aggregation should finish within this timeout. // Otherwise an aggregation set should be reclaimed by the recoverer. const aggregationTimeout = 2 * time.Minute // AggregationCheck checks the group identified by the given queue and group name to see if the tasks in the // group are ready to be aggregated. If so, it moves the tasks to be aggregated to a aggregation set and returns // the set ID. If not, it returns an empty string for the set ID. // The time for gracePeriod and maxDelay is computed relative to the time t. // // Note: It assumes that this function is called at frequency less than or equal to the gracePeriod. In other words, // the function only checks the most recently added task against the given gracePeriod. func (r *RDB) AggregationCheck(qname, gname string, t time.Time, gracePeriod, maxDelay time.Duration, maxSize int) (string, error) { var op errors.Op = "RDB.AggregationCheck" aggregationSetID := uuid.NewString() expireTime := r.clock.Now().Add(aggregationTimeout) keys := []string{ base.GroupKey(qname, gname), base.AggregationSetKey(qname, gname, aggregationSetID), base.AllAggregationSets(qname), base.AllGroups(qname), } argv := []interface{}{ maxSize, int64(maxDelay.Seconds()), int64(gracePeriod.Seconds()), expireTime.Unix(), t.Unix(), gname, } n, err := r.runScriptWithErrorCode(context.Background(), op, aggregationCheckCmd, keys, argv...) if err != nil { return "", err } switch n { case 0: return "", nil case 1: return aggregationSetID, nil default: return "", errors.E(op, errors.Internal, fmt.Sprintf("unexpected return value from lua script: %d", n)) } } // KEYS[1] -> asynq:{}:g:: // ------ // ARGV[1] -> task key prefix // // Output: // Array of encoded task messages // // Time Complexity: // O(N) with N being the number of tasks in the aggregation set. var readAggregationSetCmd = redis.NewScript(` local msgs = {} local ids = redis.call("ZRANGE", KEYS[1], 0, -1) for _, id in ipairs(ids) do local key = ARGV[1] .. id table.insert(msgs, redis.call("HGET", key, "msg")) end return msgs `) // ReadAggregationSet retrieves members of an aggregation set and returns a list of tasks in the set and // the deadline for aggregating those tasks. func (r *RDB) ReadAggregationSet(qname, gname, setID string) ([]*base.TaskMessage, time.Time, error) { var op errors.Op = "RDB.ReadAggregationSet" ctx := context.Background() aggSetKey := base.AggregationSetKey(qname, gname, setID) res, err := readAggregationSetCmd.Run(ctx, r.client, []string{aggSetKey}, base.TaskKeyPrefix(qname)).Result() if err != nil { return nil, time.Time{}, errors.E(op, errors.Unknown, fmt.Sprintf("redis eval error: %v", err)) } data, err := cast.ToStringSliceE(res) if err != nil { return nil, time.Time{}, errors.E(op, errors.Internal, fmt.Sprintf("cast error: Lua script returned unexpected value: %v", res)) } var msgs []*base.TaskMessage for _, s := range data { msg, err := base.DecodeMessage([]byte(s)) if err != nil { return nil, time.Time{}, errors.E(op, errors.Internal, fmt.Sprintf("cannot decode message: %v", err)) } msgs = append(msgs, msg) } deadlineUnix, err := r.client.ZScore(ctx, base.AllAggregationSets(qname), aggSetKey).Result() if err != nil { return nil, time.Time{}, errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "zscore", Err: err}) } return msgs, time.Unix(int64(deadlineUnix), 0), nil } // KEYS[1] -> asynq:{}:g:: // KEYS[2] -> asynq:{}:aggregation_sets // ------- // ARGV[1] -> task key prefix // // Output: // Redis status reply // // Time Complexity: // max(O(N), O(log(M))) with N being the number of tasks in the aggregation set // and M being the number of elements in the all-aggregation-sets list. var deleteAggregationSetCmd = redis.NewScript(` local ids = redis.call("ZRANGE", KEYS[1], 0, -1) for _, id in ipairs(ids) do redis.call("DEL", ARGV[1] .. id) end redis.call("DEL", KEYS[1]) redis.call("ZREM", KEYS[2], KEYS[1]) return redis.status_reply("OK") `) // DeleteAggregationSet deletes the aggregation set and its members identified by the parameters. func (r *RDB) DeleteAggregationSet(ctx context.Context, qname, gname, setID string) error { var op errors.Op = "RDB.DeleteAggregationSet" keys := []string{ base.AggregationSetKey(qname, gname, setID), base.AllAggregationSets(qname), } return r.runScript(ctx, op, deleteAggregationSetCmd, keys, base.TaskKeyPrefix(qname)) } // KEYS[1] -> asynq:{}:aggregation_sets // ------- // ARGV[1] -> current time in unix time var reclaimStateAggregationSetsCmd = redis.NewScript(` local staleSetKeys = redis.call("ZRANGEBYSCORE", KEYS[1], "-inf", ARGV[1]) for _, key in ipairs(staleSetKeys) do local idx = string.find(key, ":[^:]*$") local groupKey = string.sub(key, 1, idx-1) local res = redis.call("ZRANGE", key, 0, -1, "WITHSCORES") for i=1, table.getn(res)-1, 2 do redis.call("ZADD", groupKey, tonumber(res[i+1]), res[i]) end redis.call("DEL", key) end redis.call("ZREMRANGEBYSCORE", KEYS[1], "-inf", ARGV[1]) return redis.status_reply("OK") `) // ReclaimStaleAggregationSets checks for any stale aggregation sets in the given queue, and // reclaim tasks in the stale aggregation set by putting them back in the group. func (r *RDB) ReclaimStaleAggregationSets(qname string) error { var op errors.Op = "RDB.ReclaimStaleAggregationSets" return r.runScript(context.Background(), op, reclaimStateAggregationSetsCmd, []string{base.AllAggregationSets(qname)}, r.clock.Now().Unix()) } // KEYS[1] -> asynq:{}:completed // ARGV[1] -> current time in unix time // ARGV[2] -> task key prefix // ARGV[3] -> batch size (i.e. maximum number of tasks to delete) // // Returns the number of tasks deleted. var deleteExpiredCompletedTasksCmd = redis.NewScript(` local ids = redis.call("ZRANGEBYSCORE", KEYS[1], "-inf", ARGV[1], "LIMIT", 0, tonumber(ARGV[3])) for _, id in ipairs(ids) do redis.call("DEL", ARGV[2] .. id) redis.call("ZREM", KEYS[1], id) end return table.getn(ids)`) // DeleteExpiredCompletedTasks checks for any expired tasks in the given queue's completed set, // and delete all expired tasks. func (r *RDB) DeleteExpiredCompletedTasks(qname string, batchSize int) error { for { n, err := r.deleteExpiredCompletedTasks(qname, batchSize) if err != nil { return err } if n == 0 { return nil } } } // deleteExpiredCompletedTasks runs the lua script to delete expired deleted task with the specified // batch size. It reports the number of tasks deleted. func (r *RDB) deleteExpiredCompletedTasks(qname string, batchSize int) (int64, error) { var op errors.Op = "rdb.DeleteExpiredCompletedTasks" keys := []string{base.CompletedKey(qname)} argv := []interface{}{ r.clock.Now().Unix(), base.TaskKeyPrefix(qname), batchSize, } res, err := deleteExpiredCompletedTasksCmd.Run(context.Background(), r.client, keys, argv...).Result() if err != nil { return 0, errors.E(op, errors.Internal, fmt.Sprintf("redis eval error: %v", err)) } n, ok := res.(int64) if !ok { return 0, errors.E(op, errors.Internal, fmt.Sprintf("unexpected return value from Lua script: %v", res)) } return n, nil } // KEYS[1] -> asynq:{}:lease // ARGV[1] -> cutoff in unix time // ARGV[2] -> task key prefix var listLeaseExpiredCmd = redis.NewScript(` local res = {} local ids = redis.call("ZRANGEBYSCORE", KEYS[1], "-inf", ARGV[1]) for _, id in ipairs(ids) do local key = ARGV[2] .. id local v = redis.call("HGET", key, "msg") if v then table.insert(res, v) end end return res `) // ListLeaseExpired returns a list of task messages with an expired lease from the given queues. func (r *RDB) ListLeaseExpired(cutoff time.Time, qnames ...string) ([]*base.TaskMessage, error) { var op errors.Op = "rdb.ListLeaseExpired" var msgs []*base.TaskMessage for _, qname := range qnames { res, err := listLeaseExpiredCmd.Run(context.Background(), r.client, []string{base.LeaseKey(qname)}, cutoff.Unix(), base.TaskKeyPrefix(qname)).Result() if err != nil { return nil, errors.E(op, errors.Internal, fmt.Sprintf("redis eval error: %v", err)) } data, err := cast.ToStringSliceE(res) if err != nil { return nil, errors.E(op, errors.Internal, fmt.Sprintf("cast error: Lua script returned unexpected value: %v", res)) } for _, s := range data { msg, err := base.DecodeMessage([]byte(s)) if err != nil { return nil, errors.E(op, errors.Internal, fmt.Sprintf("cannot decode message: %v", err)) } msgs = append(msgs, msg) } } return msgs, nil } // ExtendLease extends the lease for the given tasks by LeaseDuration (30s). // It returns a new expiration time if the operation was successful. func (r *RDB) ExtendLease(qname string, ids ...string) (expirationTime time.Time, err error) { expireAt := r.clock.Now().Add(LeaseDuration) var zs []redis.Z for _, id := range ids { zs = append(zs, redis.Z{Member: id, Score: float64(expireAt.Unix())}) } // Use XX option to only update elements that already exist; Don't add new elements // TODO: Consider adding GT option to ensure we only "extend" the lease. Ceveat is that GT is supported from redis v6.2.0 or above. err = r.client.ZAddXX(context.Background(), base.LeaseKey(qname), zs...).Err() if err != nil { return time.Time{}, err } return expireAt, nil } // KEYS[1] -> asynq:servers:{} // KEYS[2] -> asynq:workers:{} // ARGV[1] -> TTL in seconds // ARGV[2] -> server info // ARGV[3:] -> alternate key-value pair of (worker id, worker data) // Note: Add key to ZSET with expiration time as score. // ref: https://github.com/antirez/redis/issues/135#issuecomment-2361996 var writeServerStateCmd = redis.NewScript(` redis.call("SETEX", KEYS[1], ARGV[1], ARGV[2]) redis.call("DEL", KEYS[2]) for i = 3, table.getn(ARGV)-1, 2 do redis.call("HSET", KEYS[2], ARGV[i], ARGV[i+1]) end redis.call("EXPIRE", KEYS[2], ARGV[1]) return redis.status_reply("OK")`) // WriteServerState writes server state data to redis with expiration set to the value ttl. func (r *RDB) WriteServerState(info *base.ServerInfo, workers []*base.WorkerInfo, ttl time.Duration) error { var op errors.Op = "rdb.WriteServerState" ctx := context.Background() bytes, err := base.EncodeServerInfo(info) if err != nil { return errors.E(op, errors.Internal, fmt.Sprintf("cannot encode server info: %v", err)) } exp := r.clock.Now().Add(ttl).UTC() args := []interface{}{ttl.Seconds(), bytes} // args to the lua script for _, w := range workers { bytes, err := base.EncodeWorkerInfo(w) if err != nil { continue // skip bad data } args = append(args, w.ID, bytes) } skey := base.ServerInfoKey(info.Host, info.PID, info.ServerID) wkey := base.WorkersKey(info.Host, info.PID, info.ServerID) if err := r.client.ZAdd(ctx, base.AllServers, redis.Z{Score: float64(exp.Unix()), Member: skey}).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "sadd", Err: err}) } if err := r.client.ZAdd(ctx, base.AllWorkers, redis.Z{Score: float64(exp.Unix()), Member: wkey}).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "zadd", Err: err}) } return r.runScript(ctx, op, writeServerStateCmd, []string{skey, wkey}, args...) } // KEYS[1] -> asynq:servers:{} // KEYS[2] -> asynq:workers:{} var clearServerStateCmd = redis.NewScript(` redis.call("DEL", KEYS[1]) redis.call("DEL", KEYS[2]) return redis.status_reply("OK")`) // ClearServerState deletes server state data from redis. func (r *RDB) ClearServerState(host string, pid int, serverID string) error { var op errors.Op = "rdb.ClearServerState" ctx := context.Background() skey := base.ServerInfoKey(host, pid, serverID) wkey := base.WorkersKey(host, pid, serverID) if err := r.client.ZRem(ctx, base.AllServers, skey).Err(); err != nil { return errors.E(op, errors.Internal, &errors.RedisCommandError{Command: "zrem", Err: err}) } if err := r.client.ZRem(ctx, base.AllWorkers, wkey).Err(); err != nil { return errors.E(op, errors.Internal, &errors.RedisCommandError{Command: "zrem", Err: err}) } return r.runScript(ctx, op, clearServerStateCmd, []string{skey, wkey}) } // KEYS[1] -> asynq:schedulers:{} // ARGV[1] -> TTL in seconds // ARGV[2:] -> schedler entries var writeSchedulerEntriesCmd = redis.NewScript(` redis.call("DEL", KEYS[1]) for i = 2, #ARGV do redis.call("LPUSH", KEYS[1], ARGV[i]) end redis.call("EXPIRE", KEYS[1], ARGV[1]) return redis.status_reply("OK")`) // WriteSchedulerEntries writes scheduler entries data to redis with expiration set to the value ttl. func (r *RDB) WriteSchedulerEntries(schedulerID string, entries []*base.SchedulerEntry, ttl time.Duration) error { var op errors.Op = "rdb.WriteSchedulerEntries" ctx := context.Background() args := []interface{}{ttl.Seconds()} for _, e := range entries { bytes, err := base.EncodeSchedulerEntry(e) if err != nil { continue // skip bad data } args = append(args, bytes) } exp := r.clock.Now().Add(ttl).UTC() key := base.SchedulerEntriesKey(schedulerID) err := r.client.ZAdd(ctx, base.AllSchedulers, redis.Z{Score: float64(exp.Unix()), Member: key}).Err() if err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "zadd", Err: err}) } return r.runScript(ctx, op, writeSchedulerEntriesCmd, []string{key}, args...) } // ClearSchedulerEntries deletes scheduler entries data from redis. func (r *RDB) ClearSchedulerEntries(scheduelrID string) error { var op errors.Op = "rdb.ClearSchedulerEntries" ctx := context.Background() key := base.SchedulerEntriesKey(scheduelrID) if err := r.client.ZRem(ctx, base.AllSchedulers, key).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "zrem", Err: err}) } if err := r.client.Del(ctx, key).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "del", Err: err}) } return nil } // CancelationPubSub returns a pubsub for cancelation messages. func (r *RDB) CancelationPubSub() (*redis.PubSub, error) { var op errors.Op = "rdb.CancelationPubSub" ctx := context.Background() pubsub := r.client.Subscribe(ctx, base.CancelChannel) _, err := pubsub.Receive(ctx) if err != nil { return nil, errors.E(op, errors.Unknown, fmt.Sprintf("redis pubsub receive error: %v", err)) } return pubsub, nil } // PublishCancelation publish cancelation message to all subscribers. // The message is the ID for the task to be canceled. func (r *RDB) PublishCancelation(id string) error { var op errors.Op = "rdb.PublishCancelation" ctx := context.Background() if err := r.client.Publish(ctx, base.CancelChannel, id).Err(); err != nil { return errors.E(op, errors.Unknown, fmt.Sprintf("redis pubsub publish error: %v", err)) } return nil } // KEYS[1] -> asynq:scheduler_history: // ARGV[1] -> enqueued_at timestamp // ARGV[2] -> serialized SchedulerEnqueueEvent data // ARGV[3] -> max number of events to be persisted var recordSchedulerEnqueueEventCmd = redis.NewScript(` redis.call("ZREMRANGEBYRANK", KEYS[1], 0, -ARGV[3]) redis.call("ZADD", KEYS[1], ARGV[1], ARGV[2]) return redis.status_reply("OK")`) // Maximum number of enqueue events to store per entry. const maxEvents = 1000 // RecordSchedulerEnqueueEvent records the time when the given task was enqueued. func (r *RDB) RecordSchedulerEnqueueEvent(entryID string, event *base.SchedulerEnqueueEvent) error { var op errors.Op = "rdb.RecordSchedulerEnqueueEvent" ctx := context.Background() data, err := base.EncodeSchedulerEnqueueEvent(event) if err != nil { return errors.E(op, errors.Internal, fmt.Sprintf("cannot encode scheduler enqueue event: %v", err)) } keys := []string{ base.SchedulerHistoryKey(entryID), } argv := []interface{}{ event.EnqueuedAt.Unix(), data, maxEvents, } return r.runScript(ctx, op, recordSchedulerEnqueueEventCmd, keys, argv...) } // ClearSchedulerHistory deletes the enqueue event history for the given scheduler entry. func (r *RDB) ClearSchedulerHistory(entryID string) error { var op errors.Op = "rdb.ClearSchedulerHistory" ctx := context.Background() key := base.SchedulerHistoryKey(entryID) if err := r.client.Del(ctx, key).Err(); err != nil { return errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "del", Err: err}) } return nil } // WriteResult writes the given result data for the specified task. func (r *RDB) WriteResult(qname, taskID string, data []byte) (int, error) { var op errors.Op = "rdb.WriteResult" ctx := context.Background() taskKey := base.TaskKey(qname, taskID) if err := r.client.HSet(ctx, taskKey, "result", data).Err(); err != nil { return 0, errors.E(op, errors.Unknown, &errors.RedisCommandError{Command: "hset", Err: err}) } return len(data), nil }