// Copyright 2020 Kentaro Hibino. All rights reserved. // Use of this source code is governed by a MIT license // that can be found in the LICENSE file. package asynq import ( "context" "fmt" "math" "math/rand" "os" "os/signal" "sync" "syscall" "time" "github.com/hibiken/asynq/internal/base" "github.com/hibiken/asynq/internal/rdb" ) // Background is responsible for managing the background-task processing. // // Background manages task queues to process tasks. // If the processing of a task is unsuccessful, background will // schedule it for a retry until either the task gets processed successfully // or it exhausts its max retry count. // // Once a task exhausts its retries, it will be moved to the "dead" queue and // will be kept in the queue for some time until a certain condition is met // (e.g., queue size reaches a certain limit, or the task has been in the // queue for a certain amount of time). type Background struct { mu sync.Mutex running bool ps *base.ProcessState // wait group to wait for all goroutines to finish. wg sync.WaitGroup rdb *rdb.RDB scheduler *scheduler processor *processor syncer *syncer heartbeater *heartbeater subscriber *subscriber } // Config specifies the background-task processing behavior. type Config struct { // Maximum number of concurrent processing of tasks. // // If set to a zero or negative value, NewBackground will overwrite the value to one. Concurrency int // Function to calculate retry delay for a failed task. // // By default, it uses exponential backoff algorithm to calculate the delay. // // n is the number of times the task has been retried. // e is the error returned by the task handler. // t is the task in question. RetryDelayFunc func(n int, e error, t *Task) time.Duration // List of queues to process with given priority value. Keys are the names of the // queues and values are associated priority value. // // If set to nil or not specified, the background will process only the "default" queue. // // Priority is treated as follows to avoid starving low priority queues. // // Example: // Queues: map[string]int{ // "critical": 6, // "default": 3, // "low": 1, // } // With the above config and given that all queues are not empty, the tasks // in "critical", "default", "low" should be processed 60%, 30%, 10% of // the time respectively. // // If a queue has a zero or negative priority value, the queue will be ignored. Queues map[string]int // StrictPriority indicates whether the queue priority should be treated strictly. // // If set to true, tasks in the queue with the highest priority is processed first. // The tasks in lower priority queues are processed only when those queues with // higher priorities are empty. StrictPriority bool // ErrorHandler handles errors returned by the task handler. // // HandleError is invoked only if the task handler returns a non-nil error. // // Example: // func reportError(task *asynq.Task, err error, retried, maxRetry int) { // if retried >= maxRetry { // err = fmt.Errorf("retry exhausted for task %s: %w", task.Type, err) // } // errorReportingService.Notify(err) // }) // // ErrorHandler: asynq.ErrorHandlerFunc(reportError) ErrorHandler ErrorHandler } // An ErrorHandler handles errors returned by the task handler. type ErrorHandler interface { HandleError(task *Task, err error, retried, maxRetry int) } // The ErrorHandlerFunc type is an adapter to allow the use of ordinary functions as a ErrorHandler. // If f is a function with the appropriate signature, ErrorHandlerFunc(f) is a ErrorHandler that calls f. type ErrorHandlerFunc func(task *Task, err error, retried, maxRetry int) // HandleError calls fn(task, err, retried, maxRetry) func (fn ErrorHandlerFunc) HandleError(task *Task, err error, retried, maxRetry int) { fn(task, err, retried, maxRetry) } // Formula taken from https://github.com/mperham/sidekiq. func defaultDelayFunc(n int, e error, t *Task) time.Duration { r := rand.New(rand.NewSource(time.Now().UnixNano())) s := int(math.Pow(float64(n), 4)) + 15 + (r.Intn(30) * (n + 1)) return time.Duration(s) * time.Second } var defaultQueueConfig = map[string]int{ base.DefaultQueueName: 1, } // NewBackground returns a new Background given a redis connection option // and background processing configuration. func NewBackground(r RedisConnOpt, cfg *Config) *Background { n := cfg.Concurrency if n < 1 { n = 1 } delayFunc := cfg.RetryDelayFunc if delayFunc == nil { delayFunc = defaultDelayFunc } queues := make(map[string]int) for qname, p := range cfg.Queues { if p > 0 { queues[qname] = p } } if len(queues) == 0 { queues = defaultQueueConfig } host, err := os.Hostname() if err != nil { host = "unknown-host" } pid := os.Getpid() rdb := rdb.NewRDB(createRedisClient(r)) ps := base.NewProcessState(host, pid, n, queues, cfg.StrictPriority) syncCh := make(chan *syncRequest) cancels := base.NewCancelations() syncer := newSyncer(syncCh, 5*time.Second) heartbeater := newHeartbeater(rdb, ps, 5*time.Second) scheduler := newScheduler(rdb, 5*time.Second, queues) processor := newProcessor(rdb, ps, delayFunc, syncCh, cancels, cfg.ErrorHandler) subscriber := newSubscriber(rdb, cancels) return &Background{ rdb: rdb, ps: ps, scheduler: scheduler, processor: processor, syncer: syncer, heartbeater: heartbeater, subscriber: subscriber, } } // A Handler processes tasks. // // ProcessTask should return nil if the processing of a task // is successful. // // If ProcessTask return a non-nil error or panics, the task // will be retried after delay. type Handler interface { ProcessTask(context.Context, *Task) error } // The HandlerFunc type is an adapter to allow the use of // ordinary functions as a Handler. If f is a function // with the appropriate signature, HandlerFunc(f) is a // Handler that calls f. type HandlerFunc func(context.Context, *Task) error // ProcessTask calls fn(ctx, task) func (fn HandlerFunc) ProcessTask(ctx context.Context, task *Task) error { return fn(ctx, task) } // Run starts the background-task processing and blocks until // an os signal to exit the program is received. Once it receives // a signal, it gracefully shuts down all pending workers and other // goroutines to process the tasks. func (bg *Background) Run(handler Handler) { logger.SetPrefix(fmt.Sprintf("asynq: pid=%d ", os.Getpid())) logger.info("Starting processing") bg.start(handler) defer bg.stop() logger.info("Send signal TSTP to stop processing new tasks") logger.info("Send signal TERM or INT to terminate the process") // Wait for a signal to terminate. sigs := make(chan os.Signal, 1) signal.Notify(sigs, syscall.SIGTERM, syscall.SIGINT, syscall.SIGTSTP) for { sig := <-sigs if sig == syscall.SIGTSTP { bg.processor.stop() bg.ps.SetStatus(base.StatusStopped) continue } break } fmt.Println() logger.info("Starting graceful shutdown") } // starts the background-task processing. func (bg *Background) start(handler Handler) { bg.mu.Lock() defer bg.mu.Unlock() if bg.running { return } bg.running = true bg.processor.handler = handler bg.heartbeater.start(&bg.wg) bg.subscriber.start(&bg.wg) bg.syncer.start(&bg.wg) bg.scheduler.start(&bg.wg) bg.processor.start(&bg.wg) } // stops the background-task processing. func (bg *Background) stop() { bg.mu.Lock() defer bg.mu.Unlock() if !bg.running { return } // Note: The order of termination is important. // Sender goroutines should be terminated before the receiver goroutines. // // processor -> syncer (via syncCh) bg.scheduler.terminate() bg.processor.terminate() bg.syncer.terminate() bg.subscriber.terminate() bg.heartbeater.terminate() bg.wg.Wait() bg.rdb.Close() bg.running = false logger.info("Bye!") }