// Copyright 2020 Kentaro Hibino. All rights reserved. // Use of this source code is governed by a MIT license // that can be found in the LICENSE file. // Package base defines foundational types and constants used in asynq package. package base import ( "context" "crypto/md5" "encoding/hex" "fmt" "strings" "sync" "time" "github.com/go-redis/redis/v8" "github.com/golang/protobuf/ptypes" "github.com/hibiken/asynq/internal/errors" pb "github.com/hibiken/asynq/internal/proto" "github.com/hibiken/asynq/internal/timeutil" "google.golang.org/protobuf/proto" ) // Version of asynq library and CLI. const Version = "0.21.0" // DefaultQueueName is the queue name used if none are specified by user. const DefaultQueueName = "default" // DefaultQueue is the redis key for the default queue. var DefaultQueue = PendingKey(DefaultQueueName) // Global Redis keys. const ( AllServers = "asynq:servers" // ZSET AllWorkers = "asynq:workers" // ZSET AllSchedulers = "asynq:schedulers" // ZSET AllQueues = "asynq:queues" // SET CancelChannel = "asynq:cancel" // PubSub channel ) // TaskState denotes the state of a task. type TaskState int const ( TaskStateActive TaskState = iota + 1 TaskStatePending TaskStateScheduled TaskStateRetry TaskStateArchived TaskStateCompleted ) func (s TaskState) String() string { switch s { case TaskStateActive: return "active" case TaskStatePending: return "pending" case TaskStateScheduled: return "scheduled" case TaskStateRetry: return "retry" case TaskStateArchived: return "archived" case TaskStateCompleted: return "completed" } panic(fmt.Sprintf("internal error: unknown task state %d", s)) } func TaskStateFromString(s string) (TaskState, error) { switch s { case "active": return TaskStateActive, nil case "pending": return TaskStatePending, nil case "scheduled": return TaskStateScheduled, nil case "retry": return TaskStateRetry, nil case "archived": return TaskStateArchived, nil case "completed": return TaskStateCompleted, nil } return 0, errors.E(errors.FailedPrecondition, fmt.Sprintf("%q is not supported task state", s)) } // ValidateQueueName validates a given qname to be used as a queue name. // Returns nil if valid, otherwise returns non-nil error. func ValidateQueueName(qname string) error { if len(strings.TrimSpace(qname)) == 0 { return fmt.Errorf("queue name must contain one or more characters") } return nil } // QueueKeyPrefix returns a prefix for all keys in the given queue. func QueueKeyPrefix(qname string) string { return fmt.Sprintf("asynq:{%s}:", qname) } // TaskKeyPrefix returns a prefix for task key. func TaskKeyPrefix(qname string) string { return fmt.Sprintf("%st:", QueueKeyPrefix(qname)) } // TaskKey returns a redis key for the given task message. func TaskKey(qname, id string) string { return fmt.Sprintf("%s%s", TaskKeyPrefix(qname), id) } // PendingKey returns a redis key for the given queue name. func PendingKey(qname string) string { return fmt.Sprintf("%spending", QueueKeyPrefix(qname)) } // ActiveKey returns a redis key for the active tasks. func ActiveKey(qname string) string { return fmt.Sprintf("%sactive", QueueKeyPrefix(qname)) } // ScheduledKey returns a redis key for the scheduled tasks. func ScheduledKey(qname string) string { return fmt.Sprintf("%sscheduled", QueueKeyPrefix(qname)) } // RetryKey returns a redis key for the retry tasks. func RetryKey(qname string) string { return fmt.Sprintf("%sretry", QueueKeyPrefix(qname)) } // ArchivedKey returns a redis key for the archived tasks. func ArchivedKey(qname string) string { return fmt.Sprintf("%sarchived", QueueKeyPrefix(qname)) } // LeaseKey returns a redis key for the lease. func LeaseKey(qname string) string { return fmt.Sprintf("%slease", QueueKeyPrefix(qname)) } func CompletedKey(qname string) string { return fmt.Sprintf("%scompleted", QueueKeyPrefix(qname)) } // PausedKey returns a redis key to indicate that the given queue is paused. func PausedKey(qname string) string { return fmt.Sprintf("%spaused", QueueKeyPrefix(qname)) } // ProcessedTotalKey returns a redis key for total processed count for the given queue. func ProcessedTotalKey(qname string) string { return fmt.Sprintf("%sprocessed", QueueKeyPrefix(qname)) } // FailedTotalKey returns a redis key for total failure count for the given queue. func FailedTotalKey(qname string) string { return fmt.Sprintf("%sfailed", QueueKeyPrefix(qname)) } // ProcessedKey returns a redis key for processed count for the given day for the queue. func ProcessedKey(qname string, t time.Time) string { return fmt.Sprintf("%sprocessed:%s", QueueKeyPrefix(qname), t.UTC().Format("2006-01-02")) } // FailedKey returns a redis key for failure count for the given day for the queue. func FailedKey(qname string, t time.Time) string { return fmt.Sprintf("%sfailed:%s", QueueKeyPrefix(qname), t.UTC().Format("2006-01-02")) } // ServerInfoKey returns a redis key for process info. func ServerInfoKey(hostname string, pid int, serverID string) string { return fmt.Sprintf("asynq:servers:{%s:%d:%s}", hostname, pid, serverID) } // WorkersKey returns a redis key for the workers given hostname, pid, and server ID. func WorkersKey(hostname string, pid int, serverID string) string { return fmt.Sprintf("asynq:workers:{%s:%d:%s}", hostname, pid, serverID) } // SchedulerEntriesKey returns a redis key for the scheduler entries given scheduler ID. func SchedulerEntriesKey(schedulerID string) string { return fmt.Sprintf("asynq:schedulers:{%s}", schedulerID) } // SchedulerHistoryKey returns a redis key for the scheduler's history for the given entry. func SchedulerHistoryKey(entryID string) string { return fmt.Sprintf("asynq:scheduler_history:%s", entryID) } // UniqueKey returns a redis key with the given type, payload, and queue name. func UniqueKey(qname, tasktype string, payload []byte) string { if payload == nil { return fmt.Sprintf("%sunique:%s:", QueueKeyPrefix(qname), tasktype) } checksum := md5.Sum(payload) return fmt.Sprintf("%sunique:%s:%s", QueueKeyPrefix(qname), tasktype, hex.EncodeToString(checksum[:])) } // TaskMessage is the internal representation of a task with additional metadata fields. // Serialized data of this type gets written to redis. type TaskMessage struct { // Type indicates the kind of the task to be performed. Type string // Payload holds data needed to process the task. Payload []byte // ID is a unique identifier for each task. ID string // Queue is a name this message should be enqueued to. Queue string // Retry is the max number of retry for this task. Retry int // Retried is the number of times we've retried this task so far. Retried int // ErrorMsg holds the error message from the last failure. ErrorMsg string // Time of last failure in Unix time, // the number of seconds elapsed since January 1, 1970 UTC. // // Use zero to indicate no last failure LastFailedAt int64 // Timeout specifies timeout in seconds. // If task processing doesn't complete within the timeout, the task will be retried // if retry count is remaining. Otherwise it will be moved to the archive. // // Use zero to indicate no timeout. Timeout int64 // Deadline specifies the deadline for the task in Unix time, // the number of seconds elapsed since January 1, 1970 UTC. // If task processing doesn't complete before the deadline, the task will be retried // if retry count is remaining. Otherwise it will be moved to the archive. // // Use zero to indicate no deadline. Deadline int64 // UniqueKey holds the redis key used for uniqueness lock for this task. // // Empty string indicates that no uniqueness lock was used. UniqueKey string // Retention specifies the number of seconds the task should be retained after completion. Retention int64 // CompletedAt is the time the task was processed successfully in Unix time, // the number of seconds elapsed since January 1, 1970 UTC. // // Use zero to indicate no value. CompletedAt int64 } // EncodeMessage marshals the given task message and returns an encoded bytes. func EncodeMessage(msg *TaskMessage) ([]byte, error) { if msg == nil { return nil, fmt.Errorf("cannot encode nil message") } return proto.Marshal(&pb.TaskMessage{ Type: msg.Type, Payload: msg.Payload, Id: msg.ID, Queue: msg.Queue, Retry: int32(msg.Retry), Retried: int32(msg.Retried), ErrorMsg: msg.ErrorMsg, LastFailedAt: msg.LastFailedAt, Timeout: msg.Timeout, Deadline: msg.Deadline, UniqueKey: msg.UniqueKey, Retention: msg.Retention, CompletedAt: msg.CompletedAt, }) } // DecodeMessage unmarshals the given bytes and returns a decoded task message. func DecodeMessage(data []byte) (*TaskMessage, error) { var pbmsg pb.TaskMessage if err := proto.Unmarshal(data, &pbmsg); err != nil { return nil, err } return &TaskMessage{ Type: pbmsg.GetType(), Payload: pbmsg.GetPayload(), ID: pbmsg.GetId(), Queue: pbmsg.GetQueue(), Retry: int(pbmsg.GetRetry()), Retried: int(pbmsg.GetRetried()), ErrorMsg: pbmsg.GetErrorMsg(), LastFailedAt: pbmsg.GetLastFailedAt(), Timeout: pbmsg.GetTimeout(), Deadline: pbmsg.GetDeadline(), UniqueKey: pbmsg.GetUniqueKey(), Retention: pbmsg.GetRetention(), CompletedAt: pbmsg.GetCompletedAt(), }, nil } // TaskInfo describes a task message and its metadata. type TaskInfo struct { Message *TaskMessage State TaskState NextProcessAt time.Time Result []byte } // Z represents sorted set member. type Z struct { Message *TaskMessage Score int64 } // ServerInfo holds information about a running server. type ServerInfo struct { Host string PID int ServerID string Concurrency int Queues map[string]int StrictPriority bool Status string Started time.Time ActiveWorkerCount int } // EncodeServerInfo marshals the given ServerInfo and returns the encoded bytes. func EncodeServerInfo(info *ServerInfo) ([]byte, error) { if info == nil { return nil, fmt.Errorf("cannot encode nil server info") } queues := make(map[string]int32) for q, p := range info.Queues { queues[q] = int32(p) } started, err := ptypes.TimestampProto(info.Started) if err != nil { return nil, err } return proto.Marshal(&pb.ServerInfo{ Host: info.Host, Pid: int32(info.PID), ServerId: info.ServerID, Concurrency: int32(info.Concurrency), Queues: queues, StrictPriority: info.StrictPriority, Status: info.Status, StartTime: started, ActiveWorkerCount: int32(info.ActiveWorkerCount), }) } // DecodeServerInfo decodes the given bytes into ServerInfo. func DecodeServerInfo(b []byte) (*ServerInfo, error) { var pbmsg pb.ServerInfo if err := proto.Unmarshal(b, &pbmsg); err != nil { return nil, err } queues := make(map[string]int) for q, p := range pbmsg.GetQueues() { queues[q] = int(p) } startTime, err := ptypes.Timestamp(pbmsg.GetStartTime()) if err != nil { return nil, err } return &ServerInfo{ Host: pbmsg.GetHost(), PID: int(pbmsg.GetPid()), ServerID: pbmsg.GetServerId(), Concurrency: int(pbmsg.GetConcurrency()), Queues: queues, StrictPriority: pbmsg.GetStrictPriority(), Status: pbmsg.GetStatus(), Started: startTime, ActiveWorkerCount: int(pbmsg.GetActiveWorkerCount()), }, nil } // WorkerInfo holds information about a running worker. type WorkerInfo struct { Host string PID int ServerID string ID string Type string Payload []byte Queue string Started time.Time Deadline time.Time } // EncodeWorkerInfo marshals the given WorkerInfo and returns the encoded bytes. func EncodeWorkerInfo(info *WorkerInfo) ([]byte, error) { if info == nil { return nil, fmt.Errorf("cannot encode nil worker info") } startTime, err := ptypes.TimestampProto(info.Started) if err != nil { return nil, err } deadline, err := ptypes.TimestampProto(info.Deadline) if err != nil { return nil, err } return proto.Marshal(&pb.WorkerInfo{ Host: info.Host, Pid: int32(info.PID), ServerId: info.ServerID, TaskId: info.ID, TaskType: info.Type, TaskPayload: info.Payload, Queue: info.Queue, StartTime: startTime, Deadline: deadline, }) } // DecodeWorkerInfo decodes the given bytes into WorkerInfo. func DecodeWorkerInfo(b []byte) (*WorkerInfo, error) { var pbmsg pb.WorkerInfo if err := proto.Unmarshal(b, &pbmsg); err != nil { return nil, err } startTime, err := ptypes.Timestamp(pbmsg.GetStartTime()) if err != nil { return nil, err } deadline, err := ptypes.Timestamp(pbmsg.GetDeadline()) if err != nil { return nil, err } return &WorkerInfo{ Host: pbmsg.GetHost(), PID: int(pbmsg.GetPid()), ServerID: pbmsg.GetServerId(), ID: pbmsg.GetTaskId(), Type: pbmsg.GetTaskType(), Payload: pbmsg.GetTaskPayload(), Queue: pbmsg.GetQueue(), Started: startTime, Deadline: deadline, }, nil } // SchedulerEntry holds information about a periodic task registered with a scheduler. type SchedulerEntry struct { // Identifier of this entry. ID string // Spec describes the schedule of this entry. Spec string // Type is the task type of the periodic task. Type string // Payload is the payload of the periodic task. Payload []byte // Opts is the options for the periodic task. Opts []string // Next shows the next time the task will be enqueued. Next time.Time // Prev shows the last time the task was enqueued. // Zero time if task was never enqueued. Prev time.Time } // EncodeSchedulerEntry marshals the given entry and returns an encoded bytes. func EncodeSchedulerEntry(entry *SchedulerEntry) ([]byte, error) { if entry == nil { return nil, fmt.Errorf("cannot encode nil scheduler entry") } next, err := ptypes.TimestampProto(entry.Next) if err != nil { return nil, err } prev, err := ptypes.TimestampProto(entry.Prev) if err != nil { return nil, err } return proto.Marshal(&pb.SchedulerEntry{ Id: entry.ID, Spec: entry.Spec, TaskType: entry.Type, TaskPayload: entry.Payload, EnqueueOptions: entry.Opts, NextEnqueueTime: next, PrevEnqueueTime: prev, }) } // DecodeSchedulerEntry unmarshals the given bytes and returns a decoded SchedulerEntry. func DecodeSchedulerEntry(b []byte) (*SchedulerEntry, error) { var pbmsg pb.SchedulerEntry if err := proto.Unmarshal(b, &pbmsg); err != nil { return nil, err } next, err := ptypes.Timestamp(pbmsg.GetNextEnqueueTime()) if err != nil { return nil, err } prev, err := ptypes.Timestamp(pbmsg.GetPrevEnqueueTime()) if err != nil { return nil, err } return &SchedulerEntry{ ID: pbmsg.GetId(), Spec: pbmsg.GetSpec(), Type: pbmsg.GetTaskType(), Payload: pbmsg.GetTaskPayload(), Opts: pbmsg.GetEnqueueOptions(), Next: next, Prev: prev, }, nil } // SchedulerEnqueueEvent holds information about an enqueue event by a scheduler. type SchedulerEnqueueEvent struct { // ID of the task that was enqueued. TaskID string // Time the task was enqueued. EnqueuedAt time.Time } // EncodeSchedulerEnqueueEvent marshals the given event // and returns an encoded bytes. func EncodeSchedulerEnqueueEvent(event *SchedulerEnqueueEvent) ([]byte, error) { if event == nil { return nil, fmt.Errorf("cannot encode nil enqueue event") } enqueuedAt, err := ptypes.TimestampProto(event.EnqueuedAt) if err != nil { return nil, err } return proto.Marshal(&pb.SchedulerEnqueueEvent{ TaskId: event.TaskID, EnqueueTime: enqueuedAt, }) } // DecodeSchedulerEnqueueEvent unmarshals the given bytes // and returns a decoded SchedulerEnqueueEvent. func DecodeSchedulerEnqueueEvent(b []byte) (*SchedulerEnqueueEvent, error) { var pbmsg pb.SchedulerEnqueueEvent if err := proto.Unmarshal(b, &pbmsg); err != nil { return nil, err } enqueuedAt, err := ptypes.Timestamp(pbmsg.GetEnqueueTime()) if err != nil { return nil, err } return &SchedulerEnqueueEvent{ TaskID: pbmsg.GetTaskId(), EnqueuedAt: enqueuedAt, }, nil } // Cancelations is a collection that holds cancel functions for all active tasks. // // Cancelations are safe for concurrent use by multipel goroutines. type Cancelations struct { mu sync.Mutex cancelFuncs map[string]context.CancelFunc } // NewCancelations returns a Cancelations instance. func NewCancelations() *Cancelations { return &Cancelations{ cancelFuncs: make(map[string]context.CancelFunc), } } // Add adds a new cancel func to the collection. func (c *Cancelations) Add(id string, fn context.CancelFunc) { c.mu.Lock() defer c.mu.Unlock() c.cancelFuncs[id] = fn } // Delete deletes a cancel func from the collection given an id. func (c *Cancelations) Delete(id string) { c.mu.Lock() defer c.mu.Unlock() delete(c.cancelFuncs, id) } // Get returns a cancel func given an id. func (c *Cancelations) Get(id string) (fn context.CancelFunc, ok bool) { c.mu.Lock() defer c.mu.Unlock() fn, ok = c.cancelFuncs[id] return fn, ok } // Lease is a time bound lease for worker to process task. // It provides a communication channel between lessor and lessee about lease expiration. type Lease struct { once sync.Once ch chan struct{} Clock timeutil.Clock mu sync.Mutex expireAt time.Time // guarded by mu } func NewLease(expirationTime time.Time) *Lease { return &Lease{ ch: make(chan struct{}), expireAt: expirationTime, Clock: timeutil.NewRealClock(), } } // Reset chanegs the lease to expire at the given time. // It returns true if the lease is still valid and reset operation was successful, false if the lease had been expired. func (l *Lease) Reset(expirationTime time.Time) bool { if !l.IsValid() { return false } l.mu.Lock() defer l.mu.Unlock() l.expireAt = expirationTime return true } // Sends a notification to lessee about expired lease // Returns true if notification was sent, returns false if the lease is still valid and notification was not sent. func (l *Lease) NotifyExpiration() bool { if l.IsValid() { return false } l.once.Do(l.closeCh) return true } func (l *Lease) closeCh() { close(l.ch) } // Done returns a communication channel from which the lessee can read to get notified when lessor notifies about lease expiration. func (l *Lease) Done() <-chan struct{} { return l.ch } // Deadline returns the expiration time of the lease. func (l *Lease) Deadline() time.Time { l.mu.Lock() defer l.mu.Unlock() return l.expireAt } // IsValid returns true if the lease's expieration time is in the future or equals to the current time, // returns false otherwise. func (l *Lease) IsValid() bool { now := l.Clock.Now() l.mu.Lock() defer l.mu.Unlock() return l.expireAt.After(now) || l.expireAt.Equal(now) } // Broker is a message broker that supports operations to manage task queues. // // See rdb.RDB as a reference implementation. type Broker interface { Ping() error Enqueue(ctx context.Context, msg *TaskMessage) error EnqueueUnique(ctx context.Context, msg *TaskMessage, ttl time.Duration) error Dequeue(qnames ...string) (*TaskMessage, time.Time, error) Done(ctx context.Context, msg *TaskMessage) error MarkAsComplete(ctx context.Context, msg *TaskMessage) error Requeue(ctx context.Context, msg *TaskMessage) error Schedule(ctx context.Context, msg *TaskMessage, processAt time.Time) error ScheduleUnique(ctx context.Context, msg *TaskMessage, processAt time.Time, ttl time.Duration) error Retry(ctx context.Context, msg *TaskMessage, processAt time.Time, errMsg string, isFailure bool) error Archive(ctx context.Context, msg *TaskMessage, errMsg string) error ForwardIfReady(qnames ...string) error DeleteExpiredCompletedTasks(qname string) error ListLeaseExpired(cutoff time.Time, qnames ...string) ([]*TaskMessage, error) ExtendLease(qname string, ids ...string) (time.Time, error) WriteServerState(info *ServerInfo, workers []*WorkerInfo, ttl time.Duration) error ClearServerState(host string, pid int, serverID string) error CancelationPubSub() (*redis.PubSub, error) // TODO: Need to decouple from redis to support other brokers PublishCancelation(id string) error WriteResult(qname, id string, data []byte) (n int, err error) Close() error }