2
0
mirror of https://github.com/hibiken/asynq.git synced 2024-11-10 11:31:58 +08:00
asynq/background.go
2020-02-16 18:22:59 -08:00

250 lines
6.8 KiB
Go

// Copyright 2020 Kentaro Hibino. All rights reserved.
// Use of this source code is governed by a MIT license
// that can be found in the LICENSE file.
package asynq
import (
"context"
"fmt"
"math"
"math/rand"
"os"
"os/signal"
"sync"
"syscall"
"time"
"github.com/hibiken/asynq/internal/base"
"github.com/hibiken/asynq/internal/rdb"
)
// Background is responsible for managing the background-task processing.
//
// Background manages task queues to process tasks.
// If the processing of a task is unsuccessful, background will
// schedule it for a retry until either the task gets processed successfully
// or it exhausts its max retry count.
//
// Once a task exhausts its retries, it will be moved to the "dead" queue and
// will be kept in the queue for some time until a certain condition is met
// (e.g., queue size reaches a certain limit, or the task has been in the
// queue for a certain amount of time).
type Background struct {
mu sync.Mutex
running bool
// channel to send state updates.
stateCh chan<- string
// wait group to wait for all goroutines to finish.
wg sync.WaitGroup
rdb *rdb.RDB
scheduler *scheduler
processor *processor
syncer *syncer
heartbeater *heartbeater
subscriber *subscriber
}
// Config specifies the background-task processing behavior.
type Config struct {
// Maximum number of concurrent processing of tasks.
//
// If set to a zero or negative value, NewBackground will overwrite the value to one.
Concurrency int
// Function to calculate retry delay for a failed task.
//
// By default, it uses exponential backoff algorithm to calculate the delay.
//
// n is the number of times the task has been retried.
// e is the error returned by the task handler.
// t is the task in question.
RetryDelayFunc func(n int, e error, t *Task) time.Duration
// List of queues to process with given priority value. Keys are the names of the
// queues and values are associated priority value.
//
// If set to nil or not specified, the background will process only the "default" queue.
//
// Priority is treated as follows to avoid starving low priority queues.
//
// Example:
// Queues: map[string]int{
// "critical": 6,
// "default": 3,
// "low": 1,
// }
// With the above config and given that all queues are not empty, the tasks
// in "critical", "default", "low" should be processed 60%, 30%, 10% of
// the time respectively.
//
// If a queue has a zero or negative priority value, the queue will be ignored.
Queues map[string]int
// StrictPriority indicates whether the queue priority should be treated strictly.
//
// If set to true, tasks in the queue with the highest priority is processed first.
// The tasks in lower priority queues are processed only when those queues with
// higher priorities are empty.
StrictPriority bool
}
// Formula taken from https://github.com/mperham/sidekiq.
func defaultDelayFunc(n int, e error, t *Task) time.Duration {
r := rand.New(rand.NewSource(time.Now().UnixNano()))
s := int(math.Pow(float64(n), 4)) + 15 + (r.Intn(30) * (n + 1))
return time.Duration(s) * time.Second
}
var defaultQueueConfig = map[string]int{
base.DefaultQueueName: 1,
}
// NewBackground returns a new Background given a redis connection option
// and background processing configuration.
func NewBackground(r RedisConnOpt, cfg *Config) *Background {
n := cfg.Concurrency
if n < 1 {
n = 1
}
delayFunc := cfg.RetryDelayFunc
if delayFunc == nil {
delayFunc = defaultDelayFunc
}
queues := make(map[string]int)
for qname, p := range cfg.Queues {
if p > 0 {
queues[qname] = p
}
}
if len(queues) == 0 {
queues = defaultQueueConfig
}
host, err := os.Hostname()
if err != nil {
host = "unknown-host"
}
pid := os.Getpid()
rdb := rdb.NewRDB(createRedisClient(r))
syncRequestCh := make(chan *syncRequest)
stateCh := make(chan string)
workerCh := make(chan int)
cancelations := base.NewCancelations()
syncer := newSyncer(syncRequestCh, 5*time.Second)
heartbeater := newHeartbeater(rdb, host, pid, n, queues, cfg.StrictPriority, 5*time.Second, stateCh, workerCh)
scheduler := newScheduler(rdb, 5*time.Second, queues)
processor := newProcessor(rdb, queues, cfg.StrictPriority, n, delayFunc, syncRequestCh, workerCh, cancelations)
subscriber := newSubscriber(rdb, cancelations)
return &Background{
stateCh: stateCh,
rdb: rdb,
scheduler: scheduler,
processor: processor,
syncer: syncer,
heartbeater: heartbeater,
subscriber: subscriber,
}
}
// A Handler processes a task.
//
// ProcessTask should return nil if the processing of a task
// is successful.
//
// If ProcessTask return a non-nil error or panics, the task
// will be retried after delay.
type Handler interface {
ProcessTask(context.Context, *Task) error
}
// The HandlerFunc type is an adapter to allow the use of
// ordinary functions as a Handler. If f is a function
// with the appropriate signature, HandlerFunc(f) is a
// Handler that calls f.
type HandlerFunc func(context.Context, *Task) error
// ProcessTask calls fn(ctx, task)
func (fn HandlerFunc) ProcessTask(ctx context.Context, task *Task) error {
return fn(ctx, task)
}
// Run starts the background-task processing and blocks until
// an os signal to exit the program is received. Once it receives
// a signal, it gracefully shuts down all pending workers and other
// goroutines to process the tasks.
func (bg *Background) Run(handler Handler) {
logger.SetPrefix(fmt.Sprintf("asynq: pid=%d ", os.Getpid()))
logger.info("Starting processing")
bg.start(handler)
defer bg.stop()
logger.info("Send signal TSTP to stop processing new tasks")
logger.info("Send signal TERM or INT to terminate the process")
// Wait for a signal to terminate.
sigs := make(chan os.Signal, 1)
signal.Notify(sigs, syscall.SIGTERM, syscall.SIGINT, syscall.SIGTSTP)
for {
sig := <-sigs
if sig == syscall.SIGTSTP {
bg.processor.stop()
bg.stateCh <- "stopped"
continue
}
break
}
fmt.Println()
logger.info("Starting graceful shutdown")
}
// starts the background-task processing.
func (bg *Background) start(handler Handler) {
bg.mu.Lock()
defer bg.mu.Unlock()
if bg.running {
return
}
bg.running = true
bg.processor.handler = handler
bg.heartbeater.start(&bg.wg)
bg.subscriber.start(&bg.wg)
bg.syncer.start(&bg.wg)
bg.scheduler.start(&bg.wg)
bg.processor.start(&bg.wg)
}
// stops the background-task processing.
func (bg *Background) stop() {
bg.mu.Lock()
defer bg.mu.Unlock()
if !bg.running {
return
}
// Note: The order of termination is important.
// Sender goroutines should be terminated before the receiver goroutines.
//
// processor -> syncer (via syncRequestCh)
// processor -> heartbeater (via workerCh)
bg.scheduler.terminate()
bg.processor.terminate()
bg.syncer.terminate()
bg.subscriber.terminate()
bg.heartbeater.terminate()
bg.wg.Wait()
bg.rdb.Close()
bg.running = false
logger.info("Bye!")
}