2
0
mirror of https://github.com/hibiken/asynq.git synced 2025-01-13 00:13:39 +08:00
asynq/internal/base/base.go
Trịnh Đức Bảo Linh 30d409371b
Fix comment typos
2022-05-16 21:14:15 -07:00

756 lines
22 KiB
Go

// Copyright 2020 Kentaro Hibino. All rights reserved.
// Use of this source code is governed by a MIT license
// that can be found in the LICENSE file.
// Package base defines foundational types and constants used in asynq package.
package base
import (
"context"
"crypto/md5"
"encoding/hex"
"fmt"
"strings"
"sync"
"time"
"github.com/go-redis/redis/v8"
"github.com/golang/protobuf/ptypes"
"github.com/hibiken/asynq/internal/errors"
pb "github.com/hibiken/asynq/internal/proto"
"github.com/hibiken/asynq/internal/timeutil"
"google.golang.org/protobuf/proto"
)
// Version of asynq library and CLI.
const Version = "0.23.0"
// DefaultQueueName is the queue name used if none are specified by user.
const DefaultQueueName = "default"
// DefaultQueue is the redis key for the default queue.
var DefaultQueue = PendingKey(DefaultQueueName)
// Global Redis keys.
const (
AllServers = "asynq:servers" // ZSET
AllWorkers = "asynq:workers" // ZSET
AllSchedulers = "asynq:schedulers" // ZSET
AllQueues = "asynq:queues" // SET
CancelChannel = "asynq:cancel" // PubSub channel
)
// TaskState denotes the state of a task.
type TaskState int
const (
TaskStateActive TaskState = iota + 1
TaskStatePending
TaskStateScheduled
TaskStateRetry
TaskStateArchived
TaskStateCompleted
TaskStateAggregating // describes a state where task is waiting in a group to be aggregated
)
func (s TaskState) String() string {
switch s {
case TaskStateActive:
return "active"
case TaskStatePending:
return "pending"
case TaskStateScheduled:
return "scheduled"
case TaskStateRetry:
return "retry"
case TaskStateArchived:
return "archived"
case TaskStateCompleted:
return "completed"
case TaskStateAggregating:
return "aggregating"
}
panic(fmt.Sprintf("internal error: unknown task state %d", s))
}
func TaskStateFromString(s string) (TaskState, error) {
switch s {
case "active":
return TaskStateActive, nil
case "pending":
return TaskStatePending, nil
case "scheduled":
return TaskStateScheduled, nil
case "retry":
return TaskStateRetry, nil
case "archived":
return TaskStateArchived, nil
case "completed":
return TaskStateCompleted, nil
case "aggregating":
return TaskStateAggregating, nil
}
return 0, errors.E(errors.FailedPrecondition, fmt.Sprintf("%q is not supported task state", s))
}
// ValidateQueueName validates a given qname to be used as a queue name.
// Returns nil if valid, otherwise returns non-nil error.
func ValidateQueueName(qname string) error {
if len(strings.TrimSpace(qname)) == 0 {
return fmt.Errorf("queue name must contain one or more characters")
}
return nil
}
// QueueKeyPrefix returns a prefix for all keys in the given queue.
func QueueKeyPrefix(qname string) string {
return fmt.Sprintf("asynq:{%s}:", qname)
}
// TaskKeyPrefix returns a prefix for task key.
func TaskKeyPrefix(qname string) string {
return fmt.Sprintf("%st:", QueueKeyPrefix(qname))
}
// TaskKey returns a redis key for the given task message.
func TaskKey(qname, id string) string {
return fmt.Sprintf("%s%s", TaskKeyPrefix(qname), id)
}
// PendingKey returns a redis key for the given queue name.
func PendingKey(qname string) string {
return fmt.Sprintf("%spending", QueueKeyPrefix(qname))
}
// ActiveKey returns a redis key for the active tasks.
func ActiveKey(qname string) string {
return fmt.Sprintf("%sactive", QueueKeyPrefix(qname))
}
// ScheduledKey returns a redis key for the scheduled tasks.
func ScheduledKey(qname string) string {
return fmt.Sprintf("%sscheduled", QueueKeyPrefix(qname))
}
// RetryKey returns a redis key for the retry tasks.
func RetryKey(qname string) string {
return fmt.Sprintf("%sretry", QueueKeyPrefix(qname))
}
// ArchivedKey returns a redis key for the archived tasks.
func ArchivedKey(qname string) string {
return fmt.Sprintf("%sarchived", QueueKeyPrefix(qname))
}
// LeaseKey returns a redis key for the lease.
func LeaseKey(qname string) string {
return fmt.Sprintf("%slease", QueueKeyPrefix(qname))
}
func CompletedKey(qname string) string {
return fmt.Sprintf("%scompleted", QueueKeyPrefix(qname))
}
// PausedKey returns a redis key to indicate that the given queue is paused.
func PausedKey(qname string) string {
return fmt.Sprintf("%spaused", QueueKeyPrefix(qname))
}
// ProcessedTotalKey returns a redis key for total processed count for the given queue.
func ProcessedTotalKey(qname string) string {
return fmt.Sprintf("%sprocessed", QueueKeyPrefix(qname))
}
// FailedTotalKey returns a redis key for total failure count for the given queue.
func FailedTotalKey(qname string) string {
return fmt.Sprintf("%sfailed", QueueKeyPrefix(qname))
}
// ProcessedKey returns a redis key for processed count for the given day for the queue.
func ProcessedKey(qname string, t time.Time) string {
return fmt.Sprintf("%sprocessed:%s", QueueKeyPrefix(qname), t.UTC().Format("2006-01-02"))
}
// FailedKey returns a redis key for failure count for the given day for the queue.
func FailedKey(qname string, t time.Time) string {
return fmt.Sprintf("%sfailed:%s", QueueKeyPrefix(qname), t.UTC().Format("2006-01-02"))
}
// ServerInfoKey returns a redis key for process info.
func ServerInfoKey(hostname string, pid int, serverID string) string {
return fmt.Sprintf("asynq:servers:{%s:%d:%s}", hostname, pid, serverID)
}
// WorkersKey returns a redis key for the workers given hostname, pid, and server ID.
func WorkersKey(hostname string, pid int, serverID string) string {
return fmt.Sprintf("asynq:workers:{%s:%d:%s}", hostname, pid, serverID)
}
// SchedulerEntriesKey returns a redis key for the scheduler entries given scheduler ID.
func SchedulerEntriesKey(schedulerID string) string {
return fmt.Sprintf("asynq:schedulers:{%s}", schedulerID)
}
// SchedulerHistoryKey returns a redis key for the scheduler's history for the given entry.
func SchedulerHistoryKey(entryID string) string {
return fmt.Sprintf("asynq:scheduler_history:%s", entryID)
}
// UniqueKey returns a redis key with the given type, payload, and queue name.
func UniqueKey(qname, tasktype string, payload []byte) string {
if payload == nil {
return fmt.Sprintf("%sunique:%s:", QueueKeyPrefix(qname), tasktype)
}
checksum := md5.Sum(payload)
return fmt.Sprintf("%sunique:%s:%s", QueueKeyPrefix(qname), tasktype, hex.EncodeToString(checksum[:]))
}
// GroupKeyPrefix returns a prefix for group key.
func GroupKeyPrefix(qname string) string {
return fmt.Sprintf("%sg:", QueueKeyPrefix(qname))
}
// GroupKey returns a redis key used to group tasks belong in the same group.
func GroupKey(qname, gkey string) string {
return fmt.Sprintf("%s%s", GroupKeyPrefix(qname), gkey)
}
// AggregationSetKey returns a redis key used for an aggregation set.
func AggregationSetKey(qname, gname, setID string) string {
return fmt.Sprintf("%s:%s", GroupKey(qname, gname), setID)
}
// AllGroups return a redis key used to store all group keys used in a given queue.
func AllGroups(qname string) string {
return fmt.Sprintf("%sgroups", QueueKeyPrefix(qname))
}
// AllAggregationSets returns a redis key used to store all aggregation sets (set of tasks staged to be aggregated)
// in a given queue.
func AllAggregationSets(qname string) string {
return fmt.Sprintf("%saggregation_sets", QueueKeyPrefix(qname))
}
// TaskMessage is the internal representation of a task with additional metadata fields.
// Serialized data of this type gets written to redis.
type TaskMessage struct {
// Type indicates the kind of the task to be performed.
Type string
// Payload holds data needed to process the task.
Payload []byte
// ID is a unique identifier for each task.
ID string
// Queue is a name this message should be enqueued to.
Queue string
// Retry is the max number of retry for this task.
Retry int
// Retried is the number of times we've retried this task so far.
Retried int
// ErrorMsg holds the error message from the last failure.
ErrorMsg string
// Time of last failure in Unix time,
// the number of seconds elapsed since January 1, 1970 UTC.
//
// Use zero to indicate no last failure
LastFailedAt int64
// Timeout specifies timeout in seconds.
// If task processing doesn't complete within the timeout, the task will be retried
// if retry count is remaining. Otherwise it will be moved to the archive.
//
// Use zero to indicate no timeout.
Timeout int64
// Deadline specifies the deadline for the task in Unix time,
// the number of seconds elapsed since January 1, 1970 UTC.
// If task processing doesn't complete before the deadline, the task will be retried
// if retry count is remaining. Otherwise it will be moved to the archive.
//
// Use zero to indicate no deadline.
Deadline int64
// UniqueKey holds the redis key used for uniqueness lock for this task.
//
// Empty string indicates that no uniqueness lock was used.
UniqueKey string
// GroupKey holds the group key used for task aggregation.
//
// Empty string indicates no aggregation is used for this task.
GroupKey string
// Retention specifies the number of seconds the task should be retained after completion.
Retention int64
// CompletedAt is the time the task was processed successfully in Unix time,
// the number of seconds elapsed since January 1, 1970 UTC.
//
// Use zero to indicate no value.
CompletedAt int64
}
// EncodeMessage marshals the given task message and returns an encoded bytes.
func EncodeMessage(msg *TaskMessage) ([]byte, error) {
if msg == nil {
return nil, fmt.Errorf("cannot encode nil message")
}
return proto.Marshal(&pb.TaskMessage{
Type: msg.Type,
Payload: msg.Payload,
Id: msg.ID,
Queue: msg.Queue,
Retry: int32(msg.Retry),
Retried: int32(msg.Retried),
ErrorMsg: msg.ErrorMsg,
LastFailedAt: msg.LastFailedAt,
Timeout: msg.Timeout,
Deadline: msg.Deadline,
UniqueKey: msg.UniqueKey,
GroupKey: msg.GroupKey,
Retention: msg.Retention,
CompletedAt: msg.CompletedAt,
})
}
// DecodeMessage unmarshals the given bytes and returns a decoded task message.
func DecodeMessage(data []byte) (*TaskMessage, error) {
var pbmsg pb.TaskMessage
if err := proto.Unmarshal(data, &pbmsg); err != nil {
return nil, err
}
return &TaskMessage{
Type: pbmsg.GetType(),
Payload: pbmsg.GetPayload(),
ID: pbmsg.GetId(),
Queue: pbmsg.GetQueue(),
Retry: int(pbmsg.GetRetry()),
Retried: int(pbmsg.GetRetried()),
ErrorMsg: pbmsg.GetErrorMsg(),
LastFailedAt: pbmsg.GetLastFailedAt(),
Timeout: pbmsg.GetTimeout(),
Deadline: pbmsg.GetDeadline(),
UniqueKey: pbmsg.GetUniqueKey(),
GroupKey: pbmsg.GetGroupKey(),
Retention: pbmsg.GetRetention(),
CompletedAt: pbmsg.GetCompletedAt(),
}, nil
}
// TaskInfo describes a task message and its metadata.
type TaskInfo struct {
Message *TaskMessage
State TaskState
NextProcessAt time.Time
Result []byte
}
// Z represents sorted set member.
type Z struct {
Message *TaskMessage
Score int64
}
// ServerInfo holds information about a running server.
type ServerInfo struct {
Host string
PID int
ServerID string
Concurrency int
Queues map[string]int
StrictPriority bool
Status string
Started time.Time
ActiveWorkerCount int
}
// EncodeServerInfo marshals the given ServerInfo and returns the encoded bytes.
func EncodeServerInfo(info *ServerInfo) ([]byte, error) {
if info == nil {
return nil, fmt.Errorf("cannot encode nil server info")
}
queues := make(map[string]int32)
for q, p := range info.Queues {
queues[q] = int32(p)
}
started, err := ptypes.TimestampProto(info.Started)
if err != nil {
return nil, err
}
return proto.Marshal(&pb.ServerInfo{
Host: info.Host,
Pid: int32(info.PID),
ServerId: info.ServerID,
Concurrency: int32(info.Concurrency),
Queues: queues,
StrictPriority: info.StrictPriority,
Status: info.Status,
StartTime: started,
ActiveWorkerCount: int32(info.ActiveWorkerCount),
})
}
// DecodeServerInfo decodes the given bytes into ServerInfo.
func DecodeServerInfo(b []byte) (*ServerInfo, error) {
var pbmsg pb.ServerInfo
if err := proto.Unmarshal(b, &pbmsg); err != nil {
return nil, err
}
queues := make(map[string]int)
for q, p := range pbmsg.GetQueues() {
queues[q] = int(p)
}
startTime, err := ptypes.Timestamp(pbmsg.GetStartTime())
if err != nil {
return nil, err
}
return &ServerInfo{
Host: pbmsg.GetHost(),
PID: int(pbmsg.GetPid()),
ServerID: pbmsg.GetServerId(),
Concurrency: int(pbmsg.GetConcurrency()),
Queues: queues,
StrictPriority: pbmsg.GetStrictPriority(),
Status: pbmsg.GetStatus(),
Started: startTime,
ActiveWorkerCount: int(pbmsg.GetActiveWorkerCount()),
}, nil
}
// WorkerInfo holds information about a running worker.
type WorkerInfo struct {
Host string
PID int
ServerID string
ID string
Type string
Payload []byte
Queue string
Started time.Time
Deadline time.Time
}
// EncodeWorkerInfo marshals the given WorkerInfo and returns the encoded bytes.
func EncodeWorkerInfo(info *WorkerInfo) ([]byte, error) {
if info == nil {
return nil, fmt.Errorf("cannot encode nil worker info")
}
startTime, err := ptypes.TimestampProto(info.Started)
if err != nil {
return nil, err
}
deadline, err := ptypes.TimestampProto(info.Deadline)
if err != nil {
return nil, err
}
return proto.Marshal(&pb.WorkerInfo{
Host: info.Host,
Pid: int32(info.PID),
ServerId: info.ServerID,
TaskId: info.ID,
TaskType: info.Type,
TaskPayload: info.Payload,
Queue: info.Queue,
StartTime: startTime,
Deadline: deadline,
})
}
// DecodeWorkerInfo decodes the given bytes into WorkerInfo.
func DecodeWorkerInfo(b []byte) (*WorkerInfo, error) {
var pbmsg pb.WorkerInfo
if err := proto.Unmarshal(b, &pbmsg); err != nil {
return nil, err
}
startTime, err := ptypes.Timestamp(pbmsg.GetStartTime())
if err != nil {
return nil, err
}
deadline, err := ptypes.Timestamp(pbmsg.GetDeadline())
if err != nil {
return nil, err
}
return &WorkerInfo{
Host: pbmsg.GetHost(),
PID: int(pbmsg.GetPid()),
ServerID: pbmsg.GetServerId(),
ID: pbmsg.GetTaskId(),
Type: pbmsg.GetTaskType(),
Payload: pbmsg.GetTaskPayload(),
Queue: pbmsg.GetQueue(),
Started: startTime,
Deadline: deadline,
}, nil
}
// SchedulerEntry holds information about a periodic task registered with a scheduler.
type SchedulerEntry struct {
// Identifier of this entry.
ID string
// Spec describes the schedule of this entry.
Spec string
// Type is the task type of the periodic task.
Type string
// Payload is the payload of the periodic task.
Payload []byte
// Opts is the options for the periodic task.
Opts []string
// Next shows the next time the task will be enqueued.
Next time.Time
// Prev shows the last time the task was enqueued.
// Zero time if task was never enqueued.
Prev time.Time
}
// EncodeSchedulerEntry marshals the given entry and returns an encoded bytes.
func EncodeSchedulerEntry(entry *SchedulerEntry) ([]byte, error) {
if entry == nil {
return nil, fmt.Errorf("cannot encode nil scheduler entry")
}
next, err := ptypes.TimestampProto(entry.Next)
if err != nil {
return nil, err
}
prev, err := ptypes.TimestampProto(entry.Prev)
if err != nil {
return nil, err
}
return proto.Marshal(&pb.SchedulerEntry{
Id: entry.ID,
Spec: entry.Spec,
TaskType: entry.Type,
TaskPayload: entry.Payload,
EnqueueOptions: entry.Opts,
NextEnqueueTime: next,
PrevEnqueueTime: prev,
})
}
// DecodeSchedulerEntry unmarshals the given bytes and returns a decoded SchedulerEntry.
func DecodeSchedulerEntry(b []byte) (*SchedulerEntry, error) {
var pbmsg pb.SchedulerEntry
if err := proto.Unmarshal(b, &pbmsg); err != nil {
return nil, err
}
next, err := ptypes.Timestamp(pbmsg.GetNextEnqueueTime())
if err != nil {
return nil, err
}
prev, err := ptypes.Timestamp(pbmsg.GetPrevEnqueueTime())
if err != nil {
return nil, err
}
return &SchedulerEntry{
ID: pbmsg.GetId(),
Spec: pbmsg.GetSpec(),
Type: pbmsg.GetTaskType(),
Payload: pbmsg.GetTaskPayload(),
Opts: pbmsg.GetEnqueueOptions(),
Next: next,
Prev: prev,
}, nil
}
// SchedulerEnqueueEvent holds information about an enqueue event by a scheduler.
type SchedulerEnqueueEvent struct {
// ID of the task that was enqueued.
TaskID string
// Time the task was enqueued.
EnqueuedAt time.Time
}
// EncodeSchedulerEnqueueEvent marshals the given event
// and returns an encoded bytes.
func EncodeSchedulerEnqueueEvent(event *SchedulerEnqueueEvent) ([]byte, error) {
if event == nil {
return nil, fmt.Errorf("cannot encode nil enqueue event")
}
enqueuedAt, err := ptypes.TimestampProto(event.EnqueuedAt)
if err != nil {
return nil, err
}
return proto.Marshal(&pb.SchedulerEnqueueEvent{
TaskId: event.TaskID,
EnqueueTime: enqueuedAt,
})
}
// DecodeSchedulerEnqueueEvent unmarshals the given bytes
// and returns a decoded SchedulerEnqueueEvent.
func DecodeSchedulerEnqueueEvent(b []byte) (*SchedulerEnqueueEvent, error) {
var pbmsg pb.SchedulerEnqueueEvent
if err := proto.Unmarshal(b, &pbmsg); err != nil {
return nil, err
}
enqueuedAt, err := ptypes.Timestamp(pbmsg.GetEnqueueTime())
if err != nil {
return nil, err
}
return &SchedulerEnqueueEvent{
TaskID: pbmsg.GetTaskId(),
EnqueuedAt: enqueuedAt,
}, nil
}
// Cancelations is a collection that holds cancel functions for all active tasks.
//
// Cancelations are safe for concurrent use by multiple goroutines.
type Cancelations struct {
mu sync.Mutex
cancelFuncs map[string]context.CancelFunc
}
// NewCancelations returns a Cancelations instance.
func NewCancelations() *Cancelations {
return &Cancelations{
cancelFuncs: make(map[string]context.CancelFunc),
}
}
// Add adds a new cancel func to the collection.
func (c *Cancelations) Add(id string, fn context.CancelFunc) {
c.mu.Lock()
defer c.mu.Unlock()
c.cancelFuncs[id] = fn
}
// Delete deletes a cancel func from the collection given an id.
func (c *Cancelations) Delete(id string) {
c.mu.Lock()
defer c.mu.Unlock()
delete(c.cancelFuncs, id)
}
// Get returns a cancel func given an id.
func (c *Cancelations) Get(id string) (fn context.CancelFunc, ok bool) {
c.mu.Lock()
defer c.mu.Unlock()
fn, ok = c.cancelFuncs[id]
return fn, ok
}
// Lease is a time bound lease for worker to process task.
// It provides a communication channel between lessor and lessee about lease expiration.
type Lease struct {
once sync.Once
ch chan struct{}
Clock timeutil.Clock
mu sync.Mutex
expireAt time.Time // guarded by mu
}
func NewLease(expirationTime time.Time) *Lease {
return &Lease{
ch: make(chan struct{}),
expireAt: expirationTime,
Clock: timeutil.NewRealClock(),
}
}
// Reset changes the lease to expire at the given time.
// It returns true if the lease is still valid and reset operation was successful, false if the lease had been expired.
func (l *Lease) Reset(expirationTime time.Time) bool {
if !l.IsValid() {
return false
}
l.mu.Lock()
defer l.mu.Unlock()
l.expireAt = expirationTime
return true
}
// Sends a notification to lessee about expired lease
// Returns true if notification was sent, returns false if the lease is still valid and notification was not sent.
func (l *Lease) NotifyExpiration() bool {
if l.IsValid() {
return false
}
l.once.Do(l.closeCh)
return true
}
func (l *Lease) closeCh() {
close(l.ch)
}
// Done returns a communication channel from which the lessee can read to get notified when lessor notifies about lease expiration.
func (l *Lease) Done() <-chan struct{} {
return l.ch
}
// Deadline returns the expiration time of the lease.
func (l *Lease) Deadline() time.Time {
l.mu.Lock()
defer l.mu.Unlock()
return l.expireAt
}
// IsValid returns true if the lease's expiration time is in the future or equals to the current time,
// returns false otherwise.
func (l *Lease) IsValid() bool {
now := l.Clock.Now()
l.mu.Lock()
defer l.mu.Unlock()
return l.expireAt.After(now) || l.expireAt.Equal(now)
}
// Broker is a message broker that supports operations to manage task queues.
//
// See rdb.RDB as a reference implementation.
type Broker interface {
Ping() error
Close() error
Enqueue(ctx context.Context, msg *TaskMessage) error
EnqueueUnique(ctx context.Context, msg *TaskMessage, ttl time.Duration) error
Dequeue(qnames ...string) (*TaskMessage, time.Time, error)
Done(ctx context.Context, msg *TaskMessage) error
MarkAsComplete(ctx context.Context, msg *TaskMessage) error
Requeue(ctx context.Context, msg *TaskMessage) error
Schedule(ctx context.Context, msg *TaskMessage, processAt time.Time) error
ScheduleUnique(ctx context.Context, msg *TaskMessage, processAt time.Time, ttl time.Duration) error
Retry(ctx context.Context, msg *TaskMessage, processAt time.Time, errMsg string, isFailure bool) error
Archive(ctx context.Context, msg *TaskMessage, errMsg string) error
ForwardIfReady(qnames ...string) error
// Group aggregation related methods
AddToGroup(ctx context.Context, msg *TaskMessage, gname string) error
AddToGroupUnique(ctx context.Context, msg *TaskMessage, groupKey string, ttl time.Duration) error
ListGroups(qname string) ([]string, error)
AggregationCheck(qname, gname string, t time.Time, gracePeriod, maxDelay time.Duration, maxSize int) (aggregationSetID string, err error)
ReadAggregationSet(qname, gname, aggregationSetID string) ([]*TaskMessage, time.Time, error)
DeleteAggregationSet(ctx context.Context, qname, gname, aggregationSetID string) error
ReclaimStaleAggregationSets(qname string) error
// Task retention related method
DeleteExpiredCompletedTasks(qname string) error
// Lease related methods
ListLeaseExpired(cutoff time.Time, qnames ...string) ([]*TaskMessage, error)
ExtendLease(qname string, ids ...string) (time.Time, error)
// State snapshot related methods
WriteServerState(info *ServerInfo, workers []*WorkerInfo, ttl time.Duration) error
ClearServerState(host string, pid int, serverID string) error
// Cancelation related methods
CancelationPubSub() (*redis.PubSub, error) // TODO: Need to decouple from redis to support other brokers
PublishCancelation(id string) error
WriteResult(qname, id string, data []byte) (n int, err error)
}