2
0
mirror of https://github.com/hibiken/asynq.git synced 2024-09-20 02:55:54 +08:00
asynq/processor.go

303 lines
8.4 KiB
Go

// Copyright 2020 Kentaro Hibino. All rights reserved.
// Use of this source code is governed by a MIT license
// that can be found in the LICENSE file.
package asynq
import (
"fmt"
"log"
"math/rand"
"sort"
"sync"
"time"
"github.com/hibiken/asynq/internal/base"
"github.com/hibiken/asynq/internal/rdb"
)
type processor struct {
rdb *rdb.RDB
handler Handler
queueConfig map[string]uint
// orderedQueues is set only in strict-priority mode.
orderedQueues []string
retryDelayFunc retryDelayFunc
// sema is a counting semaphore to ensure the number of active workers
// does not exceed the limit.
sema chan struct{}
// channel to communicate back to the long running "processor" goroutine.
// once is used to send value to the channel only once.
done chan struct{}
once sync.Once
// abort channel is closed when the shutdown of the "processor" goroutine starts.
abort chan struct{}
// quit channel communicates to the in-flight worker goroutines to stop.
quit chan struct{}
}
type retryDelayFunc func(n int, err error, task *Task) time.Duration
// newProcessor constructs a new processor.
//
// r is an instance of RDB used by the processor.
// n specifies the max number of concurrenct worker goroutines.
// qfcg is a mapping of queue names to associated priority level.
// strict specifies whether queue priority should be treated strictly.
// fn is a function to compute retry delay.
func newProcessor(r *rdb.RDB, n int, qcfg map[string]uint, strict bool, fn retryDelayFunc) *processor {
orderedQueues := []string(nil)
if strict {
orderedQueues = sortByPriority(qcfg)
}
return &processor{
rdb: r,
queueConfig: qcfg,
orderedQueues: orderedQueues,
retryDelayFunc: fn,
sema: make(chan struct{}, n),
done: make(chan struct{}),
abort: make(chan struct{}),
quit: make(chan struct{}),
handler: HandlerFunc(func(t *Task) error { return fmt.Errorf("handler not set") }),
}
}
// Note: stops only the "processor" goroutine, does not stop workers.
// It's safe to call this method multiple times.
func (p *processor) stop() {
p.once.Do(func() {
log.Println("[INFO] Processor shutting down...")
// Unblock if processor is waiting for sema token.
close(p.abort)
// Signal the processor goroutine to stop processing tasks
// from the queue.
p.done <- struct{}{}
})
}
// NOTE: once terminated, processor cannot be re-started.
func (p *processor) terminate() {
p.stop()
// IDEA: Allow user to customize this timeout value.
const timeout = 8 * time.Second
time.AfterFunc(timeout, func() { close(p.quit) })
log.Println("[INFO] Waiting for all workers to finish...")
// block until all workers have released the token
for i := 0; i < cap(p.sema); i++ {
p.sema <- struct{}{}
}
log.Println("[INFO] All workers have finished.")
p.restore() // move any unfinished tasks back to the queue.
}
func (p *processor) start() {
// NOTE: The call to "restore" needs to complete before starting
// the processor goroutine.
p.restore()
go func() {
for {
select {
case <-p.done:
log.Println("[INFO] Processor done.")
return
default:
p.exec()
}
}
}()
}
// exec pulls a task out of the queue and starts a worker goroutine to
// process the task.
func (p *processor) exec() {
qnames := p.queues()
msg, err := p.rdb.Dequeue(qnames...)
if err == rdb.ErrNoProcessableTask {
// queues are empty, this is a normal behavior.
if len(p.queueConfig) > 1 {
// sleep to avoid slamming redis and let scheduler move tasks into queues.
// Note: With multiple queues, we are not using blocking pop operation and
// polling queues instead. This adds significant load to redis.
time.Sleep(time.Second)
}
return
}
if err != nil {
log.Printf("[ERROR] unexpected error while pulling a task out of queue: %v\n", err)
return
}
select {
case <-p.abort:
// shutdown is starting, return immediately after requeuing the message.
p.requeue(msg)
return
case p.sema <- struct{}{}: // acquire token
go func() {
defer func() { <-p.sema /* release token */ }()
resCh := make(chan error, 1)
task := NewTask(msg.Type, msg.Payload)
go func() {
resCh <- perform(p.handler, task)
}()
select {
case <-p.quit:
// time is up, quit this worker goroutine.
log.Printf("[WARN] Terminating in-progress task %+v\n", msg)
return
case resErr := <-resCh:
// Note: One of three things should happen.
// 1) Done -> Removes the message from InProgress
// 2) Retry -> Removes the message from InProgress & Adds the message to Retry
// 3) Kill -> Removes the message from InProgress & Adds the message to Dead
if resErr != nil {
if msg.Retried >= msg.Retry {
p.kill(msg, resErr)
} else {
p.retry(msg, resErr)
}
return
}
p.markAsDone(msg)
}
}()
}
}
// restore moves all tasks from "in-progress" back to queue
// to restore all unfinished tasks.
func (p *processor) restore() {
n, err := p.rdb.RestoreUnfinished()
if err != nil {
log.Printf("[ERROR] Could not restore unfinished tasks: %v\n", err)
}
if n > 0 {
log.Printf("[INFO] Restored %d unfinished tasks back to queue.\n", n)
}
}
func (p *processor) requeue(msg *base.TaskMessage) {
err := p.rdb.Requeue(msg)
if err != nil {
log.Printf("[ERROR] Could not move task from InProgress back to queue: %v\n", err)
}
}
func (p *processor) markAsDone(msg *base.TaskMessage) {
err := p.rdb.Done(msg)
if err != nil {
log.Printf("[ERROR] Could not remove task from InProgress queue: %v\n", err)
}
}
func (p *processor) retry(msg *base.TaskMessage, e error) {
d := p.retryDelayFunc(msg.Retried, e, NewTask(msg.Type, msg.Payload))
retryAt := time.Now().Add(d)
err := p.rdb.Retry(msg, retryAt, e.Error())
if err != nil {
log.Printf("[ERROR] Could not send task %+v to Retry queue: %v\n", msg, err)
}
}
func (p *processor) kill(msg *base.TaskMessage, e error) {
log.Printf("[WARN] Retry exhausted for task(Type: %q, ID: %v)\n", msg.Type, msg.ID)
err := p.rdb.Kill(msg, e.Error())
if err != nil {
log.Printf("[ERROR] Could not send task %+v to Dead queue: %v\n", msg, err)
}
}
// queues returns a list of queues to query.
// Order of the queue names is based on the priority of each queue.
// Queue names is sorted by their priority level if strict-priority is true.
// If strict-priority is false, then the order of queue names are roughly based on
// the priority level but randomized in order to avoid starving low priority queues.
func (p *processor) queues() []string {
// skip the overhead of generating a list of queue names
// if we are processing one queue.
if len(p.queueConfig) == 1 {
for qname := range p.queueConfig {
return []string{qname}
}
}
if p.orderedQueues != nil {
return p.orderedQueues
}
var names []string
for qname, priority := range p.queueConfig {
for i := 0; i < int(priority); i++ {
names = append(names, qname)
}
}
r := rand.New(rand.NewSource(time.Now().UnixNano()))
r.Shuffle(len(names), func(i, j int) { names[i], names[j] = names[j], names[i] })
return uniq(names, len(p.queueConfig))
}
// perform calls the handler with the given task.
// If the call returns without panic, it simply returns the value,
// otherwise, it recovers from panic and returns an error.
func perform(h Handler, task *Task) (err error) {
defer func() {
if x := recover(); x != nil {
err = fmt.Errorf("panic: %v", x)
}
}()
return h.ProcessTask(task)
}
// uniq dedupes elements and returns a slice of unique names of length l.
// Order of the output slice is based on the input list.
func uniq(names []string, l int) []string {
var res []string
seen := make(map[string]struct{})
for _, s := range names {
if _, ok := seen[s]; !ok {
seen[s] = struct{}{}
res = append(res, s)
}
if len(res) == l {
break
}
}
return res
}
// sortByPriority returns a list of queue names sorted by
// their priority level in descending order.
func sortByPriority(qcfg map[string]uint) []string {
var queues []*queue
for qname, n := range qcfg {
queues = append(queues, &queue{qname, n})
}
sort.Sort(sort.Reverse(byPriority(queues)))
var res []string
for _, q := range queues {
res = append(res, q.name)
}
return res
}
type queue struct {
name string
priority uint
}
type byPriority []*queue
func (x byPriority) Len() int { return len(x) }
func (x byPriority) Less(i, j int) bool { return x[i].priority < x[j].priority }
func (x byPriority) Swap(i, j int) { x[i], x[j] = x[j], x[i] }