2
0
mirror of https://github.com/hibiken/asynq.git synced 2024-09-20 02:55:54 +08:00
asynq/processor.go

397 lines
10 KiB
Go

// Copyright 2020 Kentaro Hibino. All rights reserved.
// Use of this source code is governed by a MIT license
// that can be found in the LICENSE file.
package asynq
import (
"context"
"fmt"
"math/rand"
"sort"
"sync"
"time"
"github.com/hibiken/asynq/internal/base"
"github.com/hibiken/asynq/internal/rdb"
"github.com/rs/xid"
"golang.org/x/time/rate"
)
type processor struct {
rdb *rdb.RDB
pinfo *base.ProcessInfo
handler Handler
queueConfig map[string]uint
// orderedQueues is set only in strict-priority mode.
orderedQueues []string
retryDelayFunc retryDelayFunc
// channel via which to send sync requests to syncer.
syncRequestCh chan<- *syncRequest
// rate limiter to prevent spamming logs with a bunch of errors.
errLogLimiter *rate.Limiter
// sema is a counting semaphore to ensure the number of active workers
// does not exceed the limit.
sema chan struct{}
// channel to communicate back to the long running "processor" goroutine.
// once is used to send value to the channel only once.
done chan struct{}
once sync.Once
// abort channel is closed when the shutdown of the "processor" goroutine starts.
abort chan struct{}
// quit channel communicates to the in-flight worker goroutines to stop.
quit chan struct{}
// cancelFuncs is a map of task ID to cancel function for all in-progress tasks.
mu sync.Mutex
cancelFuncs map[string]context.CancelFunc
}
type retryDelayFunc func(n int, err error, task *Task) time.Duration
// newProcessor constructs a new processor.
func newProcessor(r *rdb.RDB, pinfo *base.ProcessInfo, fn retryDelayFunc, syncRequestCh chan<- *syncRequest) *processor {
qcfg := normalizeQueueCfg(pinfo.Queues)
orderedQueues := []string(nil)
if pinfo.StrictPriority {
orderedQueues = sortByPriority(qcfg)
}
return &processor{
rdb: r,
pinfo: pinfo,
queueConfig: qcfg,
orderedQueues: orderedQueues,
retryDelayFunc: fn,
syncRequestCh: syncRequestCh,
errLogLimiter: rate.NewLimiter(rate.Every(3*time.Second), 1),
sema: make(chan struct{}, pinfo.Concurrency),
done: make(chan struct{}),
abort: make(chan struct{}),
quit: make(chan struct{}),
cancelFuncs: make(map[string]context.CancelFunc),
handler: HandlerFunc(func(ctx context.Context, t *Task) error { return fmt.Errorf("handler not set") }),
}
}
// Note: stops only the "processor" goroutine, does not stop workers.
// It's safe to call this method multiple times.
func (p *processor) stop() {
p.once.Do(func() {
logger.info("Processor shutting down...")
// Unblock if processor is waiting for sema token.
close(p.abort)
// Signal the processor goroutine to stop processing tasks
// from the queue.
p.done <- struct{}{}
})
}
// NOTE: once terminated, processor cannot be re-started.
func (p *processor) terminate() {
p.stop()
// IDEA: Allow user to customize this timeout value.
const timeout = 8 * time.Second
time.AfterFunc(timeout, func() { close(p.quit) })
logger.info("Waiting for all workers to finish...")
// send cancellation signal to all in-progress task handlers
for _, cancel := range p.cancelFuncs {
cancel()
}
// block until all workers have released the token
for i := 0; i < cap(p.sema); i++ {
p.sema <- struct{}{}
}
logger.info("All workers have finished")
p.restore() // move any unfinished tasks back to the queue.
}
func (p *processor) start() {
// NOTE: The call to "restore" needs to complete before starting
// the processor goroutine.
p.restore()
go func() {
for {
select {
case <-p.done:
logger.info("Processor done")
return
default:
p.exec()
}
}
}()
}
// exec pulls a task out of the queue and starts a worker goroutine to
// process the task.
func (p *processor) exec() {
qnames := p.queues()
msg, err := p.rdb.Dequeue(qnames...)
if err == rdb.ErrNoProcessableTask {
// queues are empty, this is a normal behavior.
if len(p.queueConfig) > 1 {
// sleep to avoid slamming redis and let scheduler move tasks into queues.
// Note: With multiple queues, we are not using blocking pop operation and
// polling queues instead. This adds significant load to redis.
time.Sleep(time.Second)
}
return
}
if err != nil {
if p.errLogLimiter.Allow() {
logger.error("Dequeue error: %v", err)
}
return
}
select {
case <-p.abort:
// shutdown is starting, return immediately after requeuing the message.
p.requeue(msg)
return
case p.sema <- struct{}{}: // acquire token
p.pinfo.IncrActiveWorkerCount(1)
go func() {
defer func() {
<-p.sema /* release token */
p.pinfo.IncrActiveWorkerCount(-1)
}()
resCh := make(chan error, 1)
task := NewTask(msg.Type, msg.Payload)
// TODO: Set timeout if provided
ctx, cancel := context.WithCancel(context.Background())
p.addCancelFunc(msg.ID, cancel)
go func() {
resCh <- perform(ctx, task, p.handler)
p.deleteCancelFunc(msg.ID)
}()
select {
case <-p.quit:
// time is up, quit this worker goroutine.
logger.warn("Quitting worker to process task id=%s", msg.ID)
return
case resErr := <-resCh:
// Note: One of three things should happen.
// 1) Done -> Removes the message from InProgress
// 2) Retry -> Removes the message from InProgress & Adds the message to Retry
// 3) Kill -> Removes the message from InProgress & Adds the message to Dead
if resErr != nil {
if msg.Retried >= msg.Retry {
p.kill(msg, resErr)
} else {
p.retry(msg, resErr)
}
return
}
p.markAsDone(msg)
}
}()
}
}
// restore moves all tasks from "in-progress" back to queue
// to restore all unfinished tasks.
func (p *processor) restore() {
n, err := p.rdb.RequeueAll()
if err != nil {
logger.error("Could not restore unfinished tasks: %v", err)
}
if n > 0 {
logger.info("Restored %d unfinished tasks back to queue", n)
}
}
func (p *processor) requeue(msg *base.TaskMessage) {
err := p.rdb.Requeue(msg)
if err != nil {
logger.error("Could not push task id=%s back to queue: %v", msg.ID, err)
}
}
func (p *processor) markAsDone(msg *base.TaskMessage) {
err := p.rdb.Done(msg)
if err != nil {
errMsg := fmt.Sprintf("Could not remove task id=%s from %q", msg.ID, base.InProgressQueue)
logger.warn("%s; Will retry syncing", errMsg)
p.syncRequestCh <- &syncRequest{
fn: func() error {
return p.rdb.Done(msg)
},
errMsg: errMsg,
}
}
}
func (p *processor) retry(msg *base.TaskMessage, e error) {
d := p.retryDelayFunc(msg.Retried, e, NewTask(msg.Type, msg.Payload))
retryAt := time.Now().Add(d)
err := p.rdb.Retry(msg, retryAt, e.Error())
if err != nil {
errMsg := fmt.Sprintf("Could not move task id=%s from %q to %q", msg.ID, base.InProgressQueue, base.RetryQueue)
logger.warn("%s; Will retry syncing", errMsg)
p.syncRequestCh <- &syncRequest{
fn: func() error {
return p.rdb.Retry(msg, retryAt, e.Error())
},
errMsg: errMsg,
}
}
}
func (p *processor) kill(msg *base.TaskMessage, e error) {
logger.warn("Retry exhausted for task id=%s", msg.ID)
err := p.rdb.Kill(msg, e.Error())
if err != nil {
errMsg := fmt.Sprintf("Could not move task id=%s from %q to %q", msg.ID, base.InProgressQueue, base.DeadQueue)
logger.warn("%s; Will retry syncing", errMsg)
p.syncRequestCh <- &syncRequest{
fn: func() error {
return p.rdb.Kill(msg, e.Error())
},
errMsg: errMsg,
}
}
}
func (p *processor) addCancelFunc(id xid.ID, fn context.CancelFunc) {
p.mu.Lock()
defer p.mu.Unlock()
p.cancelFuncs[id.String()] = fn
}
func (p *processor) deleteCancelFunc(id xid.ID) {
p.mu.Lock()
defer p.mu.Unlock()
delete(p.cancelFuncs, id.String())
}
// queues returns a list of queues to query.
// Order of the queue names is based on the priority of each queue.
// Queue names is sorted by their priority level if strict-priority is true.
// If strict-priority is false, then the order of queue names are roughly based on
// the priority level but randomized in order to avoid starving low priority queues.
func (p *processor) queues() []string {
// skip the overhead of generating a list of queue names
// if we are processing one queue.
if len(p.queueConfig) == 1 {
for qname := range p.queueConfig {
return []string{qname}
}
}
if p.orderedQueues != nil {
return p.orderedQueues
}
var names []string
for qname, priority := range p.queueConfig {
for i := 0; i < int(priority); i++ {
names = append(names, qname)
}
}
r := rand.New(rand.NewSource(time.Now().UnixNano()))
r.Shuffle(len(names), func(i, j int) { names[i], names[j] = names[j], names[i] })
return uniq(names, len(p.queueConfig))
}
// perform calls the handler with the given task.
// If the call returns without panic, it simply returns the value,
// otherwise, it recovers from panic and returns an error.
func perform(ctx context.Context, task *Task, h Handler) (err error) {
defer func() {
if x := recover(); x != nil {
err = fmt.Errorf("panic: %v", x)
}
}()
return h.ProcessTask(ctx, task)
}
// uniq dedupes elements and returns a slice of unique names of length l.
// Order of the output slice is based on the input list.
func uniq(names []string, l int) []string {
var res []string
seen := make(map[string]struct{})
for _, s := range names {
if _, ok := seen[s]; !ok {
seen[s] = struct{}{}
res = append(res, s)
}
if len(res) == l {
break
}
}
return res
}
// sortByPriority returns a list of queue names sorted by
// their priority level in descending order.
func sortByPriority(qcfg map[string]uint) []string {
var queues []*queue
for qname, n := range qcfg {
queues = append(queues, &queue{qname, n})
}
sort.Sort(sort.Reverse(byPriority(queues)))
var res []string
for _, q := range queues {
res = append(res, q.name)
}
return res
}
type queue struct {
name string
priority uint
}
type byPriority []*queue
func (x byPriority) Len() int { return len(x) }
func (x byPriority) Less(i, j int) bool { return x[i].priority < x[j].priority }
func (x byPriority) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
// normalizeQueueCfg divides priority numbers by their
// greatest common divisor.
func normalizeQueueCfg(queueCfg map[string]uint) map[string]uint {
var xs []uint
for _, x := range queueCfg {
xs = append(xs, x)
}
d := gcd(xs...)
res := make(map[string]uint)
for q, x := range queueCfg {
res[q] = x / d
}
return res
}
func gcd(xs ...uint) uint {
fn := func(x, y uint) uint {
for y > 0 {
x, y = y, x%y
}
return x
}
res := xs[0]
for i := 0; i < len(xs); i++ {
res = fn(xs[i], res)
if res == 1 {
return 1
}
}
return res
}