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Introducing Project Harbor

• An open source enterprise-class registry server. (launched Mar 
2016)
• Initiated by VMware China
• Apache 2 license
• https://github.com/vmware/harbor/
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Project Harbor and Golang
• Harbor uses and grows with Go language from Day 1
• Go  v1.3-1.7
• Beego: v1.3-1.6

• A member project of Golang Foundation
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Harbor Users and Partners
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Harbor Contributors Worldwide
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Harbor Adoption
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Key Users and Partners
• Users

• Partners
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Harbor used in Production and Dev
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Do you recommend Harbor?
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Docker Container Lifecycle: Build-Ship-Run



Build-Ship-Run through Registry

Cloud

• Registry is a key component of devops



Harbor : Enterprise-Class Private Registry

Why does one need a private registry?

• Efficiency
• LAN vs WAN

• Security
• Intellectual property stays in organization
• Access Control 
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Enterprise Oriented Features

• User management & access control
• RBAC: admin, developer, guest
• AD/LDAP integration

• Policy based image replication
•Web UI ( 中文 and English)
• Audit and logs
• Restful API for integration
• Lightweight and easy deployment
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Project Harbor - Microservices Architecture
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Image Replication between Registry Instances 
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Image Replication Use Case(1)
• Image distribution for large cluster
• Load balancing
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Image Replication Use Case(2)

• Remote image synchronization
• Geographically distributed teams
• On prem to public cloud 

• Back up
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Requirements of Image Replication

• Asynchronous replication (background job)
• Little impact to registry service (throttle)
• Reliable and auto retry failed operations (recovery)
•Manual intervention (admin interaction)



Producer and Consumer Pattern
• Front end (UI) or registry generates replication jobs (producer) 
• Backend workers handle replication (consumer)
• Potential issues
• Producers need to sleep or wait when buffer is full
• Sleep or wait is not suitable for front end / registry
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Dispatcher 

Modified Producer and Consumer Pattern
• Non blocking for producers
• Dispatcher queues jobs
• Dispatcher distributes jobs to available workers
• Workers added back to available worker queue after jobs are 

completed
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Goroutine as Lightweight Thread

• Simple syntax
• go f(x,y,z)

• Concurrency ( asynchronousness ) 
• Shared the same address space
• Non blocking for main flow
• Ideal for background replication



Channel for Communication between 
Threads
• Syntax
• No buffering:   make(chan Type)
• With buffering: make(chan Type, capacity) 
• Send:          ch <- v
• Receive:     v:= <- ch

• Used to block or unblock threads
• Dispatcher thread ( producer)
• Worker thread (consumer)

• Also used for stopping a job



Worker Pool
• Predefine a pool of available workers (default:3, not to overwhelm 

frontend tasks)
• A list of workers and a channel for dispatching job

harbor/src/jobservice/job/workerpool.go



Worker

• A channel to receive replication job
• Another channel to receive special instruction, such as quitting 

harbor/src/jobservice/job/workerpool.go



Workers Wait for Replication Job
• Channel w.RepJobs blocked until a job is dispatched



Dispatcher
• Receives job and distributes to available worker
• Channel WorkerPool.workerChan is blocked if no worker is 

available 
• harbor/src/jobservice/job/workerpool.go



Replication Job

• Replicating an image itself 
seems not THAT hard
• However ….
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The Complexity of Replication Job

•The complexity adds up in these aspects:
•Monitoring (logging)
• Error handling
• Arbitrary exit
• Graceful retry
• Auto recovery

•Really messy in control flow



State Machine Comes in to Rescue

• Simple is beautiful!
• A divide-and-conquer mindset to simplify 

logic
• Sort out a limited numbers of states
• Define conditions of transition
• Focus on handling logic of each state
• Separate concerns like errors and retries 



Replication Job in State Diagram

Pending

Cancele
d

FinishedRunning

Retry

Error
Start



State Machine

harbor/src/jobservice/job/statemachine.go

• Each worker has a state machine to execute core logic



Configure State Machine

harbor/src/jobservice/job/statemachine.go

• Building state diagram by adding states and transition 
handlers



Demo



Results

•Small code base
•Straightforward logic
•Reliable operations
•Monitoring and logging
•Container image replication is very 
welcome by users



Summary
•Goroutine is great for concurrency programming.
•Channel used for coordination between 
goroutines.
•State machine pattern simplifies the 
implementation of control flow.

•Try it, love it and contribute to it!

https://github.com/vmware/harbor


