
Harbor开源项目
容器镜像远程复制的实现

Henry Zhang (张海宁)
Chief Architect
VMWare China

自我介绍
• VMware中国研发首席架构师
• Harbor开源企业级容器Registry项目创始人
• Cloud Foundry中国社区最早技术布道师之一
• 多年全栈工程师
• 《区块链技术指南》、《软件定义存储》作者之一

亨利笔记 《区块链技术指南》 《软件定义存储》

Introducing Project Harbor

• An open source enterprise-class registry server. (launched Mar
2016)
• Initiated by VMware China
• Apache 2 license
• https://github.com/vmware/harbor/

3

Project Harbor and Golang
• Harbor uses and grows with Go language from Day 1
• Go v1.3-1.7
• Beego: v1.3-1.6

• A member project of Golang Foundation

4

Harbor Users and Partners

200+
2000

+10K+

Downloads Stars Users

46

Contributors

500+

Forks

6

Partners

5

Harbor Contributors Worldwide

6

Harbor Adoption

7

Key Users and Partners
• Users

• Partners

8

Harbor used in Production and Dev

0

10

20

30

40

50

60

Dev and Production Dev Production Still evaluating

In what environment Harbor is used? (%)

Survey based on Chinese user community, 53 responses

Do you recommend Harbor?

0

10

20

30

40

50

60

70

80

90

100

Yes Unsure No

Do you recommend Harbor to others? (%)

Survey based on Chinese user community, 53 responses

Docker Container Lifecycle: Build-Ship-Run

Build-Ship-Run through Registry

Cloud

• Registry is a key component of devops

Harbor : Enterprise-Class Private Registry

Why does one need a private registry?

• Efficiency
• LAN vs WAN

• Security
• Intellectual property stays in organization
• Access Control

13

Enterprise Oriented Features

• User management & access control
• RBAC: admin, developer, guest
• AD/LDAP integration

• Policy based image replication
•Web UI (中文 and English)
• Audit and logs
• Restful API for integration
• Lightweight and easy deployment

14

Project Harbor - Microservices Architecture

Basic Registry
(Docker

Distribution)Docker
Client

Revers
e Proxy
(Nginx) API

Harbor

Browser

Auth

UI

DB
(MySQL)

AD /
LDAP

Admin
Server

Log
Collector
(rsyslog)

Replication
Service

15

Remote
Harbor
instance

Image Replication between Registry Instances

16

Project

Images

Policy

Image

Project

Images

Initial replication

Image

Incremental replication
(including image deletion)

Image Replication Use Case(1)
• Image distribution for large cluster
• Load balancing

17

Master – Slave

Docker
Client

push

Docker
host

Docker
host

pull

Docker
host

Docker
host

Docker
host

Docker
host

Docker
host

Image Replication Use Case(2)

• Remote image synchronization
• Geographically distributed teams
• On prem to public cloud

• Back up

18

Master – Master

Docker
host

Docker
host

Docker
host

Docker
host

Docker
Client

Docker
Client

Dev Registry

Test Registry

Staging
Registry

Production
Registry

images

CI

Git

images
images

images
images

images

Shipping (Publishing) Images via Replication

Requirements of Image Replication

• Asynchronous replication (background job)
• Little impact to registry service (throttle)
• Reliable and auto retry failed operations (recovery)
•Manual intervention (admin interaction)

Producer and Consumer Pattern
• Front end (UI) or registry generates replication jobs (producer)
• Backend workers handle replication (consumer)
• Potential issues
• Producers need to sleep or wait when buffer is full
• Sleep or wait is not suitable for front end / registry

Front End

Registry

Worker 1

Worker 2

Worker3
Producer

Consumer

Job queue

Dispatcher

Modified Producer and Consumer Pattern
• Non blocking for producers
• Dispatcher queues jobs
• Dispatcher distributes jobs to available workers
• Workers added back to available worker queue after jobs are

completed

Front End

Registry
Worker

Producer Consumer
Job queue

dispatch

Available worker queue

Goroutine as Lightweight Thread

• Simple syntax
• go f(x,y,z)

• Concurrency (asynchronousness)
• Shared the same address space
• Non blocking for main flow
• Ideal for background replication

Channel for Communication between
Threads
• Syntax
• No buffering: make(chan Type)
• With buffering: make(chan Type, capacity)
• Send: ch <- v
• Receive: v:= <- ch

• Used to block or unblock threads
• Dispatcher thread (producer)
• Worker thread (consumer)

• Also used for stopping a job

Worker Pool
• Predefine a pool of available workers (default:3, not to overwhelm

frontend tasks)
• A list of workers and a channel for dispatching job

harbor/src/jobservice/job/workerpool.go

Worker

• A channel to receive replication job
• Another channel to receive special instruction, such as quitting

harbor/src/jobservice/job/workerpool.go

Workers Wait for Replication Job
• Channel w.RepJobs blocked until a job is dispatched

Dispatcher
• Receives job and distributes to available worker
• Channel WorkerPool.workerChan is blocked if no worker is

available
• harbor/src/jobservice/job/workerpool.go

Replication Job

• Replicating an image itself
seems not THAT hard
• However ….

initializing

checking

pulling		
manifest

transferring	
blobs

pushing	
manifest

finished

has	
tags

No

Yes

The Complexity of Replication Job

•The complexity adds up in these aspects:
•Monitoring (logging)
• Error handling
• Arbitrary exit
• Graceful retry
• Auto recovery

•Really messy in control flow

State Machine Comes in to Rescue

• Simple is beautiful!
• A divide-and-conquer mindset to simplify

logic
• Sort out a limited numbers of states
• Define conditions of transition
• Focus on handling logic of each state
• Separate concerns like errors and retries

Replication Job in State Diagram

Pending

Cancele
d

FinishedRunning

Retry

Error
Start

State Machine

harbor/src/jobservice/job/statemachine.go

• Each worker has a state machine to execute core logic

Configure State Machine

harbor/src/jobservice/job/statemachine.go

• Building state diagram by adding states and transition
handlers

Demo

Results

•Small code base
•Straightforward logic
•Reliable operations
•Monitoring and logging
•Container image replication is very
welcome by users

Summary
•Goroutine is great for concurrency programming.
•Channel used for coordination between
goroutines.
•State machine pattern simplifies the
implementation of control flow.

•Try it, love it and contribute to it!

https://github.com/vmware/harbor

