€D,

KubeBlocks - A domain-driven design

W

operator for stateful workloads

M E/Songlu Tsai

ApeCloud.com
CTO & Cofounder

on k8s

stateful workloads

must to have

, (Status Quo of stateful workloads 01

(What are the real challenges? 02

(A domain-driven design operator for03

(A rich set of day-2 operations is 04

Solution for cloud-native 05
applications

Part 1

Status Quo of stateful workloads on k8s

Stateful workloads on k8s

94% of organizations surveyed deploy services and applications on Kubernetes
90% of surveyed companies believe Kubernetes is ready for stateful workloads
a large majority (70%) of them are running them in production

Databases take the top spot with persistent storage, streaming, messaging,

backup archival storage all tying for the second spot here

From DoKC - Data on Kubernetes Community 2021 Report

Stateful workloads on k8s

Stateful workloads running on k8s

Database

Persistent Storage
Streaming/Messaging
Backup/Archival Storage

Object Storage

Analytics
Al/ML

From DoKC - Data on Kubernetes Community 2021 Report @

Stateful workloads on k8s

Most important factors affecting the decision to run stateful workloads on k8s

Ensure Consistency 45

Standardizing on k8s
Simplify Management
Enable Developpers to self manage

Enable hybrid/multi-provider DBaaS
Reducing TCO

Avoid Vendor lock-in

Auto healing

From DoKC - Data on Kubernetes Community 2021 Report

Stateful workloads on k8s

Primary challenges of running data on k8s

Vendor Solutions solve niche needs 35

Little or no vendor solutions exists 35

Too much time/effort to manage

Lack of quality talent

Lack of interoperatibility with existing stack
Lack of integration with existing tools

Lack of examples showing other companies doing it

Too complex to integrate into our environment

From DoKC - Data on Kubernetes Community 2021 Report

Part 2

What are the real challenges?

Multiple databases with Multiple operators

Multiple operators for provisioning a modern data stack

/ Data sources\ /Data Ingestion\ / Storage & \

Warehousing A modern business data flow is
composed of:

\'
‘ \\\ Fivetran Jdb - OLTP database for transaction
>a< snowflake © NOSOL database f "
Ml__]SQL 0SQL database for caching
‘,7 & k-v retrieving
amazon - Steaming database for ETL
REDSHIFT
mongoDB

- Warehouse database for data
% mining
EJ . Google
salesforce .
__,_‘l %ﬂggﬁon BigQuery
o A\ DN /

Existing database operators on k8s

= we
ore

MySQL Oracle MySQL Create/Update/ Scale up Snapshot Exporter & Group
Destroy Grafana Replication

MySQL Percona Create/Update/ Scale up xtrabackup Exporter & XtraDB
Destroy Grafana

PostgreSQL Zalando Create/Update/ Scale up pg_backbac Exporter & Patroni
Destroy kup Grafana

Redis redis-operator Create/Update/ Scale up & out x Exporter & Sentinel
Destroy Grafana

MongoDB MongoDB Create/Update/ Scale up X Exporter & MongoDB

Community Destroy Grafana

Operators explosion

All what you need is database, not operators
K8s is lack of standard for stateful workloads

Multiple operators comes with operators explosion:

- Inconsistent experience
. different Ul & APIs
. features are disaligned

- Learning a bunch of operators
. keep you busy from the real business

- Maintainence burden
. upgrading becomes disaster
. what if an operator stops evolving

Profound k8s stack

|'m pretty Sure
the a.ppllca:t.on is
Somewhere around here

)

I..OAD BALANCE
= NERESS =
KuBE RROXr

SErViee /esk
SARE (G2
APPLICATION

Trouble shooting is getting harder

In order to troubleshoot an outage, you need to be:
- at least, a profound CKA
. or a helm install chokes you
- undoubted, a sophisticated Network Expert
. as traffic is magic
- for better, a qualified System Engineer
. log is everywhere and nowhere
- at last, a professional DBA

. app hangs at web, boss hangs on phone, and you hangs...

Good at orchestration, but lack of integration

K8s landscape is awesome,
but what you need is a necklace, not pearls on beach.

ervice Remote Procedure

mm mz n
] Call

Scheduling & Orchestration

Service Pro:

Keca .""‘" . -

MMQ.
E}

Runtime

-e gRPC D @mwmm m@
_ (0?" envoy HM CNCF ;‘-D
. !

a.,-
-, (:) .-wow.m-wu 5{ () .-
ister iy

@EU -@-H
e

Container Runtime

o €3 o
HEIOOn

curity & Compliance

.’ @ Bscevcroax ?’?‘é m - ul?ﬂe
ow-r--n . // — in -toto Kyverno Tatay M\;
E----D-Nﬁ@@l\mmﬁ 2.

=B
fluentd

CNCF

- >
1 -
. &

1" " OpanTelematry
CNCF CNCE

45 ermon wean !Litmus
CNCF

E@l
X

Tracing
-

Chaos Engineerin
¢—~e o

Ccntmuous Dpnmzauon

Part 3

A domain-driven design for stateful
workloads operators

Standard is always the first thing

As operators have similar features such as lifecycle
management, backup, monitoring, upgrade, etc...

Is it possible to build a general purpose CRD and
Controller for all stateful workloads ?

Insights from existing database operators

Let's dive into stateful workloads and popular database operators, we can see the facts:

1, Major part of the operators is handling with Lifecycle(create/destroy/update),while lack of
day-2 operations

2, The stateful workload has more than one roles/components in an instance, such as primary,
secondary, leader, follower and learner, etc.

3, Lifecycle is about processing the topology and traits of an instance, the topology is relations
& dependencies among roles/components, while the traits are runtime metas can be mainly
described by podSpec

4, A stateful workload has many versions against same topology

5, The data dependencies between components can be concluded as primary-secondary for

calssic hot standby cluster, leader-follower for distributed clusters based on PAXOS or RAFT

ReplicationSet & ConsensusSet

A primary-secondary group is so cohesive that we can treat them as a basic set named
ReplicationSet, while we call the leader-follower group as ConsensusSet. ReplicationSet &
ConsensusSet are basic blocks to build larger stateful clusters. That's also why we got

the name KubeBlocks.
ConsensusSet

. a. ETCD/Zookeeper/MongoDB
ReplicationSet P J

MySQL/PG/Redis/...

Leader
Follower

Secondary

Follower

Basic blocks of KubeBlocks

A typical MySQL sharding Topology - Stateless Block is native k8s stateless

Meta Management el Searieton deployment, used for proxy, control plane
StatefulSet Stateless Stateless process

- Statefulset Block is native k8s statefulset,

MySQL MySQL

MySQL

Rer%ILcatOilorlllSet used for process holding persistent data
ard-

ReplicationSet ReplicationSet
Shard-1 Shard-2

and providing service alone

StatefulSet, used for classical hot standby
ReplicationSet ConsensusSet Cluster
Stateless - ConsensusSet Block is built on
StatefulSet, used for Paxos or RAFT group

€D,

CRDs in KubeBlocks

kind:ClusterDefinition kind:ClusterVersion
o metadata: metadata: .
ClusterDefinition spec: spec: ClusterVersion
Specification for - characterType: postgresql componentVersions: p_ 9
topology and default workloadType: Replication » ~ componentDefRef: postgresql version
i cenmici peest versionContext: - Override the default

runtime metas logConfigs: containers: | . L

monitor: - image: spilo:12.14.1 images in ClusterDefintion

name: postgresql initContainers:

podSpec: - image: spilo:12.14.1

containers: , r
..................................... >&
Cluster kind:Cluster
- Specification for a metadata:
spec:
concrete cluster clusterDefinitionRef: postgresql
- Override the default clusterVersionRef: postgresql-12.14.1
. . componentSpecs:
runtime settings of - componentDefRef: postgresql
monitoring, logs, resources, replicas: 2
o volumeClaimTemplates: ’

affinity, VCTs...

Controllers in KubeBlocks

CRDs Controllers Operations

ClusterDefinition .
LifeCycle management

ClusterVersion CIEEEiCeniellcis — > Horizontal & Vertical scaling

Cluster Version upgrading

BackupPolicy

BackupTool BackupController

RestoreController

Backups Reconfiguration

RestoreJob — > Backup & Restore

Monitoring
ConfigConstraint s ConfigController

|

il
il |

OpsRequest

OpsController

]

Part 4

A rich set of day-2 operations is
must to have

Operator capability levels

m

Basic Install Seamless Upgrades Full Lifecycle Deep Insights Auto Pilot
Automated Patch and minor version App lifecycle, storage Metrics, alerts, log Horizontal/vertical
application upgrades supported lifecycle (backup, failure processing and workload scaling, auto config
provisioning and recovery) analysis tuning, abnormal
configuration detection, scheduling
management tuning

'rose35' is name of a primary-secondary postgresq|
describe the config of cluster rose35
$ kbcli cluster describe-config rose35

edit the postgresql.conf like kubectl edit

$ kbcli cluster edit-config rose35

explain the config parameters
kbcli cluster explain-config rose35

set max connections to 500
kbcli cluster configure rose35 --set max_connections=500

create a backup
kbcli cluster backup rose35

create a snapshot backup, make sure the CSI support it
kbcli cluster backup rose35 --type snapshot

create a backup with specified backup policy
kbcli cluster backup rose35 --backup-policy <backup-policy-name>

restore a new cluster from a backup
kbcli cluster restore new-cluster-name --backup backup-name

restore a new cluster from point in time
kbcli cluster restore new-cluster-name --restore-to-time "Apr 13,2023 18:40:35
UTC+0800" --source-cluster rose35

dashboard of grafana, prometheus and alertmanager
$ kbcli dashboard list

NAME NAMESPACE PORT CREATED-TIME
kubeblocks-grafana kb-system 13000 May 31,2023 16:45 UTC+0800
kubeblocks-prometheus-alertmanager kb-system 19093 May 31,2023 16:45 UTC+0800

kubeblocks-prometheus-server kb-system 19090 May 31,2023 16:45 UTC+Q800

open grafana in browser
$ kbcli dasharboard open kubeblocks-grafana

® 127.0.0.1:13000/?orgld=1

B8 General / Home

Welcome to Grafana

B8 General / PostgreSQL <

nancopave
default
default
default
default

default

namespace
default
default
default
default

default

> Connections (2 panels)

> Tuples (5 panels)

> Queries (6 panels)

> Transactions & WAL (4 panels)
> Conflicts & Locks (4 panels)

> Buffers & Blocks Operations

> Temp files (2 panels)

> Database Size (7 panel)

> Replication (5 panels)

viusict

rose35
rose35
rose35
rose35

rose35

cluster
rose35
rose35
rose35
rose35

rose35

(7 panels)

G

rose35-postgre Q

mowan

rose35-postgre i}

rose35-postgri

oo

rose35-postgre oo

rose35-postgr @

a

instar
rose35-postgr
rose35-postgre
rose35-postgr
rose35-postgre

rose35-postgr

88 General / Node Exporter v o

CPU Cores RAM Total

16 62 GiB

CPU Busy

\

RAM Used

3.73 GiB
e I I

1.86 GiB

0B
22:50 23:00 23:10

== RAM Total == RAM Used
RAM Cache + Buffer == RAM Free
SWAP Used

v CPU per Core

CPU Modes

100.0%

soox (i D R b @ an vl

o] B &

W e -

i - .

SWAP Total Disk Total

(1] 39 GiB

SWAP Used

\

Disk R/W Data

W

\/\/\/\/—’\/\/‘\/v

22:50 23:00 23:10

26.4MB/s 26.9 MB/s
62.7kB/s 94.2kB/s
290 MB/s 329 MB/s

Disk Used

400 MB/s

200 MB/s

0B/s

== nvmeln1 - Read bytes
== nvmeOn1 - Written bytes

== nvmeln1 - Written bytes

il b S} ® Last30 minutes v Q O 5s v 2

CPU

75.00%
50.00%
25.00%

0.00% * s
22:50 22:55 23:05

Busy User == Busy |OWait == Busy IRQs

== Busy System

Busy Other

Disk Space Used

0%
22:50 23:00 23:10

- /
== /run/containerd/io.containerd.grpc.v1.cri/sandbox

== /run/containerd/io.containerd.grpc.v1.cri/sandbox

CPU System Time

200.0 ms

0.0%
22:50 22:55 23:00 23:05

== User - Normal processes executing in user mode

Idle - Waitina faor somethina to hannen

23:10 23:15

== CPUO
= CPlI1

10s

500.0 ms

0s BMosd
23:05 23:10 23015

Mean Last * Max Min
122 ms
103 ms

160ms 210ms Os == CPUO

120 ms 200 ms Ns == CPII1

System Uptime

48 hour

System Load

30.7

Network Traffic

duuatsaiba sanl B

0 b/ T

-2 Gb/s
22:50 23:00 23:10

== recv cali7e36e8e90d3 == recvdummyO
== recv eth0 == recvethl == recv kube-ipvsO

== recvlo == recvnodelocaldns

CPU Idle Time

23:00 23:05 23:10
Mean Last * Max
20.0ms 980 ms
40 0 ms 1s

247 ms
273 ms

horizontal scaling of rose35, add a replica for cluster
$ kbcli cluster hscale rose35 --replicas=3

OpsRequest rose3 5-horizontalscaling-ldiwk created successfully, you can view
the progress:

-- kbcli cluster describe-ops rose35-horizontalscaling-ldlwk -n default

vertical scaling of cpu and memory
$ kbcli cluster vscale rose35 --components=postgresql --cpu=500m --
memory=500Mi

slc@slcmac kubeblocks % kbcli cluster describe-ops rose35-horizontalscaling-ldlwk -n default
Spec:
Name: rose35-horizontalscaling-ldlwk NameSpace: default Cluster: rose35 Type: HorizontalScaling

Command:
kbcli cluster hscale rose35 --components=postgresql --replicas=3 --namespace=default

Last Configuration:
COMPONENT REPLICAS
postgresql 2

Status:
Start Time: Jun 06,2023 12:48 UTC+0800
Completion Time: Jun 06,2023 12:49 UTC+0800
Duration: 50s
Status: Succeed
Progress: 171
OBJECT-KEY STATUS DURATION MESSAGE
Pod/rose35-postgresql-2 Succeed 36s Successfully created pod: Pod/rose35-postgresql-2 in Component: postgresql

Conditions:

LAST-TRANSITION-TIME TYPE REASON STATUS MESSAGE

Jun 06,2023 12:48 UTC+0800 Progressing OpsRequestProgressingStarted True Start to process the OpsRequest: rose35-horizontalscaling-ldlwk in Cluster: rose35

Jun 06,2023 12:48 UTC+0800 Validated ValidateOpsRequestPassed True OpsRequest: rose35-horizontalscaling-ldlwk is validated

Jun 06,2023 12:48 UTC+0800 HorizontalScaling HorizontalScalingStarted True Start to horizontal scale replicas in Cluster: rose35

Jun 06,2023 12:49 UTC+0800 Succeed OpsRequestProcessedSuccessfully True Successfully processed the OpsRequest: rose35-horizontalscaling-1ldlwk in Cluster: rose35

upgrade the cluster to the target version
kbcli cluster upgrade rose35 --cluster-version=postgresql-14.7.2

OpsRequest rose3 5-upgrade-6bwct created successfully, you can view the
progress:
kbcli cluster describe-ops rose35-upgrade-6bwct -n default

#
Create a migration task to migrate the entire database under mysqgl: mydb1
and mytable1 under database: mydb2 to the
target mysql
kbcli migration create mytask --template apecloud-mysqgl2mysq|

--source user:123456@127.0.0.1:3306
--sink user:123456@127.0.0.1:3305
--migration-object '""mydb1","mydb2.mytable1™

Part 5

Solution for cloud-native
applications

Sealos with KubeBlocks

SealOS is a Cloud Operating System designed for managing cloud-native applications,
leveraging KubeBlocks for privision of database workloads.
They can be deployed in on—-premises & multi-cloud environments.

Userinterface API/CLI/GUI

————————————————————————————

'AFI: data is backed up to an 0SS

! User APP ——» Backup
: ; outside the cluster. '
____________________________ . o DNS ———— | External 0SS
--------------------------- : Application manager User APP Restore
ITha user application accesses the | g cluster
-dartabasa through DNS. ' User APP —»

1 Using openEBS for providing E RBNTINGS]
i underlying storage to the | i me———— S Y U—— P DS

i database, leveraging local disk | L________ 2 | A ST, L% | ol I 5 N ;
s performance and using LVM to | _

| provide tenant storage isolation. | Cilium Gvisor/Containerd OpenEBS LVM local PV

Bare metal/Ali Cloud/AWS/Google cloud

