
KubeBlocks - A domain-driven design
operator for stateful workloads

蔡松露/Songlu Tsai

ApeCloud.com
CTO & Cofounder

Status Quo of stateful workloads
on k8s

01

What are the real challenges? 02

A domain-driven design operator for
stateful workloads

03

A rich set of day-2 operations is
must to have

04

Solution for cloud-native
applications

05

Status Quo of stateful workloads on k8s
Part 1

Stateful workloads on k8s

94% of organizations surveyed deploy services and applications on Kubernetes

90% of surveyed companies believe Kubernetes is ready for stateful workloads

a large majority (70%) of them are running them in production

Databases take the top spot with persistent storage, streaming, messaging,

backup archival storage all tying for the second spot here

From DoKC - Data on Kubernetes Community 2021 Report

Stateful workloads on k8s

From DoKC - Data on Kubernetes Community 2021 Report

38

39

42

45

45

45

50Database

Persistent Storage

Streaming/Messaging

Backup/Archival Storage

Object Storage

Analytics

AI/ML

Stateful workloads running on k8s

Stateful workloads on k8s

From DoKC - Data on Kubernetes Community 2021 Report

22

25

29

35

39

39

40

45Ensure Consistency

Standardizing on k8s

Simplify Management

Enable Developpers to self manage

Enable hybrid/multi-provider DBaaS

Reducing TCO

Avoid Vendor lock-in

Auto healing

Most important factors affecting the decision to run stateful workloads on k8s

Stateful workloads on k8s

15

29

32

32

35

35

35

35Vendor Solutions solve niche needs

Little or no vendor solutions exists

Too much time/effort to manage

Lack of quality talent

Lack of interoperatibility with existing stack

Lack of integration with existing tools

Lack of examples showing other companies doing it

Too complex to integrate into our environment

From DoKC - Data on Kubernetes Community 2021 Report

Primary challenges of running data on k8s

What are the real challenges?
Part 2

Multiple databases with Multiple operators

A modern business data flow is
composed of:
- OLTP database for transaction
- NoSQL database for caching
& k-v retrieving
- Steaming database for ETL
- Warehouse database for data
mining

Multiple operators for provisioning a modern data stack

Data sources Data Ingestion Storage &
Warehousing

Existing database operators on k8s

Database Operator LifeCycle Scaling Backup/Rest
ore

Monitoring HA

MySQL Oracle MySQL Create/Update/
Destroy

Scale up Snapshot Exporter &
Grafana

Group
Replication

MySQL Percona Create/Update/
Destroy

Scale up xtrabackup Exporter &
Grafana

XtraDB

PostgreSQL Zalando Create/Update/
Destroy

Scale up pg_backbac
kup

Exporter &
Grafana

Patroni

Redis redis-operator Create/Update/
Destroy

Scale up & out x Exporter &
Grafana

Sentinel

MongoDB MongoDB
Community

Create/Update/
Destroy

Scale up x Exporter &
Grafana

MongoDB

...

Operators explosion

All what you need is database, not operators
K8s is lack of standard for stateful workloads

Multiple operators comes with operators explosion:

- Inconsistent experience
 . different UI & APIs

 . features are disaligned

- Learning a bunch of operators
 . keep you busy from the real business

- Maintainence burden
 . upgrading becomes disaster

 . what if an operator stops evolving

Profound k8s stack

In order to troubleshoot an outage, you need to be:

- at least, a profound CKA

 . or a helm install chokes you

- undoubted, a sophisticated Network Expert

 . as traffic is magic

- for better, a qualified System Engineer

 . log is everywhere and nowhere

- at last, a professional DBA

 . app hangs at web, boss hangs on phone, and you hangs...

Trouble shooting is getting harder

Good at orchestration, but lack of integration

K8s landscape is awesome,
but what you need is a necklace, not pearls on beach.

When you fight with database on k8s

A domain-driven design for stateful
workloads operators

Part 3

Standard is always the first thing

As operators have similar features such as lifecycle
management, backup, monitoring, upgrade, etc...

Is it possible to build a general purpose CRD and
Controller for all stateful workloads ?

Insights from existing database operators

Let's dive into stateful workloads and popular database operators, we can see the facts:

1, Major part of the operators is handling with Lifecycle(create/destroy/update),while lack of

day-2 operations

2, The stateful workload has more than one roles/components in an instance, such as primary,

secondary, leader, follower and learner, etc.

3, Lifecycle is about processing the topology and traits of an instance, the topology is relations

& dependencies among roles/components, while the traits are runtime metas can be mainly

described by podSpec

4, A stateful workload has many versions against same topology

5, The data dependencies between components can be concluded as primary-secondary for

calssic hot standby cluster, leader-follower for distributed clusters based on PAXOS or RAFT

ReplicationSet & ConsensusSet

A primary-secondary group is so cohesive that we can treat them as a basic set named

ReplicationSet, while we call the leader-follower group as ConsensusSet. ReplicationSet &

ConsensusSet are basic blocks to build larger stateful clusters. That's also why we got

the name KubeBlocks.

Primary Secondary

ReplicationSet
MySQL/PG/Redis/...

Leader Follower

Follower

ConsensusSet
ETCD/Zookeeper/MongoDB

Basic blocks of KubeBlocks

- Stateless Block is native k8s stateless

deployment, used for proxy, control plane

process

- Statefulset Block is native k8s statefulset,

used for process holding persistent data

and providing service alone

- ReplicationSet Block is built on

StatefulSet, used for classical hot standby

cluster

- ConsensusSet Block is built on

StatefulSet, used for Paxos or RAFT group
StatefulSet

ReplicationSet ConsensusSet

Stateless

MySQL
ReplicationSet

Shard-N
...

MySQL
ReplicationSet

Shard-2

MySQL
ReplicationSet

Shard-1

Meta Management
StatefulSet

Coordinator
Stateless

Coordinator
Stateless

A typical MySQL sharding Topology

Four types of Blocks

CRDs in KubeBlocks
 kind:ClusterDefinition
metadata:
spec:
 componentDefs:
 - characterType: postgresql
 workloadType: Replication
 configSpecs:
 logConfigs:
 monitor:
 name: postgresql
 podSpec:
 containers:

ClusterDefinition
- Specification for

topology and default
runtime metas

kind:ClusterVersion
metadata:
spec:
 clusterDefinitionRef: postgresql
 componentVersions:
 - componentDefRef: postgresql
 versionContext:
 containers:
 - image: spilo:12.14.1
 initContainers:
 - image: spilo:12.14.1

ClusterVersion
- Specification for image
version
- Override the default
images in ClusterDefintion

kind:Cluster
metadata:
spec:
 clusterDefinitionRef: postgresql
 clusterVersionRef: postgresql-12.14.1
 componentSpecs:
 - componentDefRef: postgresql
 replicas: 2
 volumeClaimTemplates:

Cluster
- Specification for a
concrete cluster
- Override the default
runtime settings of
monitoring, logs, resources,
affinity, VCTs...

Controllers in KubeBlocks

LifeCycle management

Horizontal & Vertical scaling

Version upgrading

ClusterDefinition

ClusterVersion

Cluster

BackupPolicy

BackupTool

Backups

ConfigConstraint

OpsRequest

CRDs

ClusterController

BackupController

RestoreController

ConfigController

OpsController

Controllers

RestoreJob

Reconfiguration

Backup & Restore

Monitoring

Operations

A rich set of day-2 operations is
must to have

Part 4

Operator capability levels

Reconfiguration

'rose35' is name of a primary-secondary postgresql
describe the config of cluster rose35
$ kbcli cluster describe-config rose35

edit the postgresql.conf like kubectl edit
$ kbcli cluster edit-config rose35

explain the config parameters
kbcli cluster explain-config rose35

set max connections to 500
 kbcli cluster configure rose35 --set max_connections=500

Backup & Restore

 # create a backup
 kbcli cluster backup rose35

 # create a snapshot backup, make sure the CSI support it
 kbcli cluster backup rose35 --type snapshot

 # create a backup with specified backup policy
 kbcli cluster backup rose35 --backup-policy <backup-policy-name>

 # restore a new cluster from a backup
 kbcli cluster restore new-cluster-name --backup backup-name

 # restore a new cluster from point in time
 kbcli cluster restore new-cluster-name --restore-to-time "Apr 13,2023 18:40:35
UTC+0800" --source-cluster rose35

Monitoring

dashboard of grafana, prometheus and alertmanager
$ kbcli dashboard list

open grafana in browser
$ kbcli dasharboard open kubeblocks-grafana

Monitoring

Horizontal & vertical scaling

horizontal scaling of rose35, add a replica for cluster
$ kbcli cluster hscale rose35 --replicas=3

OpsRequest rose35-horizontalscaling-ldlwk created successfully, you can view
the progress:
-- kbcli cluster describe-ops rose35-horizontalscaling-ldlwk -n default

vertical scaling of cpu and memory
$ kbcli cluster vscale rose35 --components=postgresql --cpu=500m --
memory=500Mi

Horizontal & vertical scaling

Version upgrading

 # Attention : the major version upragde may cause a failure due to
incompatible data format, so we suggest that the minor version upgrade
through the 'upgrade' subcommand, the major version upragde through a
data migration
upgrade the cluster to the target version
 kbcli cluster upgrade rose35 --cluster-version=postgresql-14.7.2

OpsRequest rose35-upgrade-6bwct created successfully, you can view the
progress:

kbcli cluster describe-ops rose35-upgrade-6bwct -n default

Migration

Attention : only a subset versions of databases are supported
Create a migration task to migrate the entire database under mysql: mydb1
and mytable1 under database: mydb2 to the
target mysql
 kbcli migration create mytask --template apecloud-mysql2mysql
 --source user:123456@127.0.0.1:3306
 --sink user:123456@127.0.0.1:3305
 --migration-object '"mydb1","mydb2.mytable1"'

Solution for cloud-native
applications

Part 5

Sealos with KubeBlocks

SealOS is a Cloud Operating System designed for managing cloud-native applications,
leveraging KubeBlocks for privision of database workloads.

They can be deployed in on-premises & multi-cloud environments.

What about us

All great
things start
from
scratches.

All great
minds have a
percentage of
madness.

kubeblocks.slack.com kubeblocks@WeChat

