
Go to the Cloud
Why do people building cloud computing

choose Go?
Vladimir Vivien

About Me

Vladimir Vivien (@VladimirVivien)
Staff Engineer, VMware

Go book author, technologist

What is Cloud Native
Computing?

Cloud Native Computing

A collection of technologies that automates the
deployment and management of highly decoupled
and resilient application workloads across a uniform
abstraction of compute resources to create dynamic
and elastic infrastructures.

What makes cloud native
computing possible?

Abstraction

The ability of one technology to make it
easier to use another technology by hiding its
complexities and/or simplifying its
representation.

And so on...Application
Operating

System
Machine

Code
Instruction Set

Architecture
Processor

Important abstraction 1:

Hardware as software
(VMs, storage, networking, etc)

Hardware

Virtual Machine 1

Virtual networking
hardware

Virtual storage
device

Virtual Hardware N

Important
abstraction 2:

The containerized process

Hardware

Virtual storage
device

Virtual Hardware N

Virtual Machine 1

Container 1 Container 2 Container 3

Container N

Abstraction leads to automation.

Automation leads to:

Programmability
Repeatability

Resiliency

Cloud Native Computing
Attributes

Cloud native infrastructures
● Abstraction of compute, storage, and networking resources
● Virtualized resources can be programmed via well-defined API

endpoints that are consumable over HTTP
● Leading to automation of resource creation, observation,

management, and resource teardown
● Creates an elastic infrastructures that are capable of dynamically

scale across resources

Cloud native applications
● Built as self-contained, portable, and executable resources
● Single binaries packaged to run in lightweight containers
● Built with automated tools for agile deployments
● Run as loosely-coupled services cross-cutting different domains
● Services use HTTP to expose well-defined API endpoints
● Ability to scale and move across compute resources as needed

Why Choose Go for Cloud
Native Computing?

Simplicity

Go has a small language spec and
borrows well-known primitives from

other languages.

Go keywords (all of them)

Simple syntax

● Go source code is easy to read

● Newcomers from other languages can learn Go and be productive quickly

● Projects can scale and grow with new members

● Though simplistic in syntax, the Go language allow developers to construct

large and complex cloud native systems such as Docker, Kubernetes,

Prometheus, Consul, etcd, etc.

Strongly typed

Go has a powerful type system where all
values are required to be typed
(implicitly/explicitly) with applied compile-time
checks and safety.

Type safety

● Supports data type stability in programs at runtime

● The type safety of a program can be verified at compiled time

with the ability for programs to scale in size and complexity

without data type correctness and safety issues

● This eliminates entire classes of runtime errors that are

caused by data and type hazards

Concurrency

Go uses simple concurrency primitives
known as goroutines with support for
inter-process communication via channels.

* 2

Concurrent Programming
● Uses simple concurrency constructs that are easy to reason about
● Goroutines can multiplex hundreds or even thousands of concurrently

running processes efficiently across hardware threads
● Type safe inter-process communication that can be used for

synchronization and/or data sharing
● Easily create complex, multi-process, and highly performant

concurrent cloud native programs to handle large scale
infrastructures and cloud native application workloads

Memory management

Go programs are compiled to include a
runtime manager which, among many things,
handles memory allocation and garbage
collection.

Automatic memory management

● In Go, programmers are not responsible (and not allowed) to
allocate and manipulate memory addresses and values directly

● Memory is allocated and deallocated using the runtime manager.
● Unused memory is automatically collected at runtime once out of

scope
● This eliminates an entire class of safety and security related bugs
● Cloud native developers rely on these safeguards to create safe and

performant applications and shared infrastructures for running
multi-tenant workloads

Cross-platform compilation

The Go compiler can automatically compile a
single source code to target multiple OSs
and hardware architectures.

https://www.digitalocean.com/community/tutorials/building-go-applications-for-different-operating-systems-and-architectures

env GOOS=windows GOARCH=amd64 go build github.com/vladimirvivien/echo

Building for multiple platforms
● The Go toolchain can compile programs to automatically target a

combination of several operating systems and hardware

architectures from a single source code

● This plays well in cloud native computing environments allowing

developers to automatically build programs to target virtualized

resources, which may be running a variety of operating systems

and architectures

Static linking

Go programs are compiled into a single
statically-linked binary.

The single binary
● By default, Go programs are compiled into a single statically linked

binary with no external dependencies needed to run.
● Once compiled, the program is ready to run, eliminating an entire

set of issues that can arise with runtime dependency management.
● In cloud native computing systems, this features allows Go

programs to be packaged as lightweight containers that can be
quickly be retrieved and ready to run, making them ideal for
orchestrated environments such as Kubernetes.

Network programming

The Go standard library comes with inherent
support for low-level network programming
and multiple protocols.

Simple echo server

Low-level Networking
● Cloud native infrastructures can span across several hundred (or even

thousands) of distributed machines and other components

● These components rely on networking protocols such as TCP/IP for

communications and services.

● Using the Go standard library programmers can quickly write correct

and performant networking code using protocols such as TCP, IP, UDP,

Unix Domains sockets with support for both IPv4 and IPv6.

HTTP services

The Go standard library comes with packages to
build HTTP-based client and server programs.

Simple HTTP service

Building HTTP service APIs
● Cloud native infrastructures and applications rely heavily on

HTTP-based service APIs to facilitate access, operation,
observability, and management of computing components and the
applications running in these environments

● Fortunately, the Go standard library allows programmers to easily
create correct, efficient, performant HTTP server programs to
expose robust API endpoints using a variety of protocol including
REST and gRPC

Cryptography

The Go standard library provides access to
robust implementations of popular
cryptographic protocols for building secure
programs.

Building secure programs
● Due to its distributed nature, one requirement of cloud native

infrastructures is the secure exchange of data between its components

to ensure safety and avoid unauthorized data access.

● Using the Go standard library crypto packages programmers can write

secure code using a large number of supported cryptographic

operations including hash functions, signatures, symmetric/asymmetric

key functions, encoder/decoder crypto formats.

Operating system interfacing

Go’s standard library provides a rich set of
APIs to create programs that can interface
with the enclosing operating system where
the programs are running.

Executing a shell command

Platform-independent OS interactions

● Cloud native computing requires that infrastructure resources are
programmable in order to achieve high level of automation using and
accessing functionalities of the underlying operating of compute
components for control and management.

● The Go standard library provides packages that make it easy to write
platform-independent code that can efficiently interact with the
underlying operating system and access functionalities such as file
operations, system signaling, and process management.

Go is not a perfect language, but it is
perfect for cloud native computing.

Than you

@vladimirvivien

