
Writing High Performance Go
GopherChina
17 April 2016

Dave Cheney

Welcome

您好!

Thank you for coming to my talk.

Thank you also to the GopherChina organisers for inviting me to speak.

My name is David. I'm a Go programmer from Sydney, Australia.

I'm a contributor to the Go project and I run the Sydney Go Users' group.

Agenda

This talk is aimed at development teams who are building production Go applications
intended for high scale deployment.

This presentation will be available after the talk. It contains lots of examples and links
to other material.

Today I am going to cover four areas:

Performance measurement and pro�ling

Benchmarking

Memory management and GC tuning

Concurrency

I'm going to be here for the entire conference, please come and ask me your questions
after the talk.

Performance measurement and pro�ling

Performance measurement and pro�ling

There is a old Australian proverb.

"Measure twice, cut once"

Before you can begin to tune your application, you need to know if your changes are
making things better, or worse.

You must establish a reliable baseline to measure the impact of your change.

In other words, "Don't guess, measure"

Pro�ling basics

Before you pro�le, you must have a stable environment to get repeatable results.

The machine must be idle—don't pro�le on shared hardware, don't browse the
web while waiting for a long benchmark to run.

Watch out for power saving and thermal scaling.

Avoid virtual machines and shared cloud hosting; they are too noisy for consistent
measurements.

There is a kernel bug on OS X versions less than El Capitan; upgrade or avoid
pro�ling on OS X.

If you can a�ord it, buy dedicated performance test hardware. Rack them, disable all
the power management and thermal scaling and never update the software on those
machines.

For everyone else, have a before and after sample and run them multiple times to get
consistent results.

pprof

The primary tool we're going to be talking about today is pprof.

pprof descends from the Google Performance Tools suite.

pprof pro�ling is built into the Go runtime.

We're going to discuss CPU and Memory pro�ling today.

Further reading: runtime/pprof (https://golang.org/pkg/runtime/pprof)

Further reading: Google Perf Tools (https://github.com/gperftools/gperftools)

https://golang.org/pkg/runtime/pprof
https://github.com/gperftools/gperftools

CPU pro�ling

CPU pro�ling is the most common type of pro�le.

When CPU pro�ling is enabled, the runtime will interrupt itself every 10ms and record
the stack trace of the currently running goroutines.

Once the pro�le is saved to disk, we can analyse it to determine the hottest code
paths.

The more times a function appears in the pro�le, the more time that code path is
taking as a percentage of the total runtime.

Memory pro�ling

Memory pro�ling records the stack trace when a heap allocation is made.

Memory pro�ling, like CPU pro�ling is sample based. By default memory pro�ling
samples 1 in every 1000 allocations. This rate can be changed.

Stack allocations are assumed to be free and are not tracked in the memory pro�le.

Because of memory pro�ling is sample based and because it tracks allocations not use,
using memory pro�ling to determine your application's overall memory usage is
di�cult.

We'll talk more about measuring memory usage later.

One pro�le at at time

Pro�ling is not free.

Pro�ling has a moderate, but measurable impact on program performance—
especially if you increase the memory pro�le sample rate.

Most tools will not stop you from enabling multiple pro�les at once.

If you enable multiple pro�les at the same time, they will observe their own
interactions and skew your results.

Do not enable more than one kind of pro�le at a time.

Using pprof

Now that I've talked about what pprof can measure, I will talk about how to use pprof
to analyse a pro�le.

pprof should always be invoked with two arguments.

go tool pprof /path/to/your/binary /path/to/your/profile

The binary argument must be the binary that produced this pro�le.

The profile argument must be the pro�le generated by this binary.

Warning: Because pprof also supports an online mode where it can fetch pro�les from
a running application over http, the pprof tool can be invoked without the name of
your binary (issue 10863 (https://github.com/golang/go/issues/10863)):

go tool pprof /tmp/c.pprof

Do not do this or pprof will report your pro�le is empty.

https://github.com/golang/go/issues/10863

Using pprof (cont.)

This is a sample cpu pro�le:

% go tool pprof $BINARY /tmp/c.p
Entering interactive mode (type "help" for commands)
(pprof) top
Showing top 15 nodes out of 63 (cum >= 4.85s)
 flat flat% sum% cum cum%
 21.89s 9.84% 9.84% 128.32s 57.71% net.(*netFD).Read
 17.58s 7.91% 17.75% 40.28s 18.11% runtime.exitsyscall
 15.79s 7.10% 24.85% 15.79s 7.10% runtime.newdefer
 12.96s 5.83% 30.68% 151.41s 68.09% test_frame/connection.(*ServerConn).readBytes
 11.27s 5.07% 35.75% 23.35s 10.50% runtime.reentersyscall
 10.45s 4.70% 40.45% 82.77s 37.22% syscall.Syscall
 9.38s 4.22% 44.67% 9.38s 4.22% runtime.deferproc_m
 9.17s 4.12% 48.79% 12.73s 5.72% exitsyscallfast
 8.03s 3.61% 52.40% 11.86s 5.33% runtime.casgstatus
 7.66s 3.44% 55.85% 7.66s 3.44% runtime.cas
 7.59s 3.41% 59.26% 7.59s 3.41% runtime.onM
 6.42s 2.89% 62.15% 134.74s 60.60% net.(*conn).Read
 6.31s 2.84% 64.98% 6.31s 2.84% runtime.writebarrierptr
 6.26s 2.82% 67.80% 32.09s 14.43% runtime.entersyscall

Often this output is hard to understand.

Using pprof (cont.)

A better way to understand your pro�le is to visualise it.

% go tool pprof $BINARY /tmp/c.p
Entering interactive mode (type "help" for commands)
(pprof) web

Opens a web page with a graphical display of the pro�le.

I �nd this method to be superior to the text mode, I strongly recommend you try it.

writing-high-performance-go/pro�le.svg (writing-high-performance-go/pro�le.svg)

pprof supports a non interactive form with �ags like -svg, -pdf, etc. See go tool
pprof -help for more details.

Further reading: Pro�ling Go programs (http://blog.golang.org/pro�ling-go-programs)

Further reading: Debugging performance issues in Go programs (https://software.intel.com/en-

us/blogs/2014/05/10/debugging-performance-issues-in-go-programs)

http://127.0.0.1:3999/writing-high-performance-go/profile.svg
http://blog.golang.org/profiling-go-programs
https://software.intel.com/en-us/blogs/2014/05/10/debugging-performance-issues-in-go-programs

Using pprof (cont.)

We can visualise memory pro�les in the same way.

% go build -gcflags='-memprofile=/tmp/m.p'
% go tool pprof --alloc_objects -svg $(go tool -n compile) /tmp/m.p > alloc_objects.svg
% go tool pprof --inuse_objects -svg $(go tool -n compile) /tmp/m.p > alloc_objects.svg

The allocation pro�le reports the location of where every allocation was made.

writing-high-performance-go/alloc_objects.svg (writing-high-performance-go/alloc_objects.svg)

In use pro�le reports the location of an allocation that are live at the end of the pro�le.

writing-high-performance-go/inuse_objects.svg (writing-high-performance-go/inuse_objects.svg)

http://127.0.0.1:3999/writing-high-performance-go/alloc_objects.svg
http://127.0.0.1:3999/writing-high-performance-go/inuse_objects.svg

Benchmarking

Benchmarking

Now that we discussed what pro�ling is, and how to use pprof, we're going to look at
writing benchmarks and interpreting their results.

The Go runtime's pro�ling interface, runtime/pprof, is a very low level tool. For
historic reasons the interfaces to the di�erent kinds of pro�le are not uniform.

To make it easier to pro�le your code you should use a higher level interface.

For pro�ling testing package benchmarks, the go test command has integrated
support for pro�ling the code under test:

For pro�ling an application, I recommend the github.com/pkg/pro�le
(https://github.com/pkg/pro�le) package.

This section focuses on how to construct useful benchmarks using the Go testing
framework, and gives practical tips for avoiding the pitfalls.

https://github.com/pkg/profile

Using the testing package for benchmarking

�b.go:

// Fib computes the n'th number in the Fibonacci series.
func Fib(n int) int {
 if n < 2 {
 return n
 }
 return Fib(n-1) + Fib(n-2)
}

�b_test.go:

import "testing"

func BenchmarkFib(b *testing.B) {
 for n := 0; n < b.N; n++ {
 Fib(20) // run the Fib function b.N times
 }
}

DEMO: go test -bench=. ./fib

Comparing benchmarks

For repeatable results, you should run benchmarks multiple times.

You can do this manually, or use the -count= �ag.

Determining the performance delta between two sets of benchmarks can be tedious
and error prone.

Tools like rsc.io/benchstat (https://godoc.org/rsc.io/benchstat) are useful for comparing results.

% go test -bench=. -count=5 > old.txt

DEMO: Improve Fib

% go test -bench=. -count=5 > new.txt
% benchstat old.txt new.txt

DEMO: benchstat {old,new}.txt

https://godoc.org/rsc.io/benchstat

Watch out for compiler optimisations

How fast will this benchmark run ?

const m1 = 0x5555555555555555
const m2 = 0x3333333333333333
const m4 = 0x0f0f0f0f0f0f0f0f
const h01 = 0x0101010101010101

func popcnt(x uint64) uint64 {
 x -= (x >> 1) & m1
 x = (x & m2) + ((x >> 2) & m2)
 x = (x + (x >> 4)) & m4
 return (x * h01) >> 56
}

func BenchmarkPopcnt(b *testing.B) {
 for i := 0; i < b.N; i++ {
 x := i
 x -= (x >> 1) & m1
 x = (x & m2) + ((x >> 2) & m2)
 x = (x + (x >> 4)) & m4
 _ = (x * h01) >> 56
 }
}

DEMO: go test -bench=. ./popcnt

What happened?

popcnt is a leaf function, so the compiler can inline it.

Because the function is inlined, the compiler can see it has no side e�ects, so the call is
eliminated. This is what the compiler sees:

func BenchmarkPopcnt(b *testing.B) {
 for i := 0; i < b.N; i++ {
 // optimised away
 }
}

This is not a bug.

The same optimisations that make code fast, by removing unnecessary computation,
are the same ones that remove benchmarks that have no observable side e�ects.

DEMO: show how to �x popcnt

Further reading: How to write benchmarks in Go (http://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go)

http://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go

Pro�ling benchmarks

The testing package has built in support for generating CPU, memory, and block
pro�les.

-cpuprofile=$FILE writes a CPU pro�le to $FILE.

-memprofile=$FILE, writes a memory pro�le to $FILE, -memprofilerate=N
adjusts the pro�le rate to 1/N.

Using any of these �ags also preserves the binary.

% go test -run=XXX -bench=IndexByte -cpuprofile=/tmp/c.p bytes
% go tool pprof bytes.test /tmp/c.p

Note: use -run=XXX to disable tests, you only want to pro�le benchmarks.

Pro�ling applications

Pro�ling testing benchmarks is useful for microbenchmarks, but what if you want to
pro�le a complete application?

To pro�le an application, you could use the runtime/pprof package, but that is �ddly
and low level.

A few years ago I wrote a small package, github.com/pkg/pro�le (https://godoc.org/github.com/pkg/pro�le) , to

make it easier to pro�le an application.

import "github.com/pkg/profile"

func main() {
 defer profile.Start().Stop()
 ...
}

DEMO: Show pro�ling cmd/godoc with pkg/profile

https://godoc.org/github.com/pkg/profile

Memory management and GC tuning

Memory management and GC tuning

Go is a garbage collected language. This is a design principal, it will not change.

The Go GC favors lower latency over maximum throughput; it moves some of the
allocation cost to the mutator to reduce the cost of cleanup later.

As a garbage collected language, the performance of Go programs is often determined
by their interaction with the garbage collector.

Next to your choice of algorithms, memory consumption is the most important factor
that determines the performance and scalability of your application.

In this section we will discuss the operation of the garbage collector, how to measure
the memory usage of your program and strategies for lowering memory usage if
garbage collector performance is a bottleneck.

Garbage collector monitoring

A simple way to obtain a general idea of how hard the garbage collector is working is
to enable the output of GC logging.

These stats are always collected, but normally supressed, you can enable their display
by setting the GODEBUG environment variable.

% env GODEBUG=gctrace=1 godoc -http=:8080
gc 1 @0.017s 8%: 0.021+3.2+0.10+0.15+0.86 ms clock, 0.043+3.2+0+2.2/0.002/0.009+1.7 ms cpu, 5->6->1 MB, 4 MB goal, 4 P
gc 2 @0.026s 12%: 0.11+4.9+0.12+1.6+0.54 ms clock, 0.23+4.9+0+3.0/0.50/0+1.0 ms cpu, 4->6->3 MB, 6 MB goal, 4 P
gc 3 @0.035s 14%: 0.031+3.3+0.76+0.17+0.28 ms clock, 0.093+3.3+0+2.7/0.012/0+0.84 ms cpu, 4->5->3 MB, 3 MB goal, 4 P
gc 4 @0.042s 17%: 0.067+5.1+0.15+0.29+0.95 ms clock, 0.20+5.1+0+3.0/0/0.070+2.8 ms cpu, 4->5->4 MB, 4 MB goal, 4 P
gc 5 @0.051s 21%: 0.029+5.6+0.33+0.62+1.5 ms clock, 0.11+5.6+0+3.3/0.006/0.002+6.0 ms cpu, 5->6->4 MB, 5 MB goal, 4 P
gc 6 @0.061s 23%: 0.080+7.6+0.17+0.22+0.45 ms clock, 0.32+7.6+0+5.4/0.001/0.11+1.8 ms cpu, 6->6->5 MB, 7 MB goal, 4 P
gc 7 @0.071s 25%: 0.59+5.9+0.017+0.15+0.96 ms clock, 2.3+5.9+0+3.8/0.004/0.042+3.8 ms cpu, 6->8->6 MB, 8 MB goal, 4 P

The trace output gives a general measure of GC activity.

DEMO: Show godoc with GODEBUG=gctrace=1 enabled

Garbage collector monitoring (cont.)

Using GODEBUG=gctrace=1 is good when you know there is a problem, but for general
telemetry I recommend the net/http/pprof interface.

import _ "net/http/pprof"

Importing the net/http/pprof package will register a handler at /debug/pprof with
various runtime metrics, including:

A list of all the running goroutines, /debug/pprof/heap?debug=1.

A report on the memory allocation statistics, /debug/pprof/heap?debug=1.

Warning: net/http/pprof will register itself with your default http.ServeMux.

Be careful as this will be visible if you use http.ListenAndServe(address, nil).

DEMO: godoc -http=:8080, show /debug/pprof.

Garbage collector tuning

The Go runtime provides one environment variable to tune the GC, GOGC.

The formula for GOGC is as follows.

goal = reachable * (1 + GOGC/100)

For example, if we currently have a 256mb heap, and GOGC=100 (the default), when the
heap �lls up it will grow to

512mb = 256mb * (1 + 100/100)

Values of GOGC greater than 100 causes the heap to grow faster, reducing the
pressure on the GC.

Values of GOGC less than 100 cause the heap to grow slowly, increasing the
pressure on the GC.

The default value of 100 is only a guide, you should choose your own value after
pro�ling your application with production loads.

Reduce allocations

Make sure your APIs allow the caller to reduce the amount of garbage generated.

Consider these two Read methods

func (r *Reader) Read() ([]byte, error)
func (r *Reader) Read(buf []byte) (int, error)

The �rst Read method takes no arguments and returns some data as a []byte. The
second takes a []byte bu�er and returns the amount of bytes read.

The �rst Read method will always allocate a bu�er, putting pressure on the GC. The
second �lls the bu�er it was given, allowing the caller to reuse the bu�er.

strings and []bytes

Most programs prefer to work with string, but most IO is done with []byte.

In Go string values are immutable, []byte are mutable. Converting between the two
generates garbage.

Avoid []byte to string conversions wherever possible, this normally means picking
one representation, either a string or a []byte for a value. Often this will be []byte if
you read the data from the network or disk.

The bytes (https://golang.org/pkg/bytes/) package contains many of the same operations— Split,

Compare, HasPrefix, Trim, etc—as the strings (https://golang.org/pkg/strings/) package.

Under the hood strings uses same assembly primitives as the bytes package.

https://golang.org/pkg/bytes/
https://golang.org/pkg/strings/

Using []byte as a map key

It is very common to use a string as a map key, but often you have a []byte.

The compiler implements a speci�c optimisation for this case

var m map[string]string
v, ok := m[string(bytes)]

This will avoid the conversion of the byte slice to a string for the map lookup. This is
very speci�c, it won't work if you do something like

key := string(bytes)
val, ok := m[key]

Avoid string concatenation

Go strings are immutable. Concatenating two strings generates a third.

Avoid string concatenation by appending into a []byte bu�er.

Before:

s := request.ID
s += " " + client.Address().String()
s += " " + time.Now().String()
return s

After:

b := make(b, 0, 40) // guess
b = append(b, request.ID...)
b = append(b, ' ')
b = append(b, addr.String()...)
b = append(b, ' ')
b = time.Now().AppendFormat(b, "2006-01-02 15:04:05.999999999 -0700 MST")
return string(b)

DEMO: go test -bench=. ./concat

Preallocate slices if the length is known

Append is convenient, but wasteful.

What is the capacity of b after we append one more item to it?

Slices grow by doubling up to 1024 elements, then by approximately 25% after that.
What is the capacity of b after we append one more item to it?

If you use the append pattern you could be copying a lot of data and creating a lot of
garbage.

If know know the length of the slice beforehand, then pre-allocate the target to avoid
copying and to make sure the target is exactly the right size.

func main() {
 b := make([]int, 1024)
 b = append(b, 99)
 fmt.Println("len:", len(b), "cap:", cap(b))
} Run

Concurrency

Goroutines

Go's signature feature is its lightweight concurrency model.

Goroutines are so cheap to create, and so easy to use, you could think of them as
almost free.

The Go runtime has been written for programs with tens of thousands of goroutines
as the norm, hundreds of thousands are not unexpected.

While cheap, these features are not free, and overuse often leads to unexpected
performance problems.

This �nal section concludes with a set of do's and don't's for e�cient use of Go's
concurrency primitives.

Know when to stop a goroutine

Goroutines are cheap to start and cheap to run, but they do have a �nite cost in terms
of memory footprint; you cannot create an in�nite number of them.

Each goroutine consumes a minimum amount of memory for the goroutine's stack,
currently at least 2k.

2048 * 1,000,000 goroutines == 2Gb of memory per 1,000,000 goroutines.

Every time you use the go keyword in your program to launch a goroutine, you must
know how and when that goroutine will exit.

If you don't know the answer, that's a potential memory leak.

In your design, some goroutines may run until the program exits. These goroutines are
rare enough to not become an exception to the rule.

Never start a goroutine without knowing how it will stop.

Use streaming IO interfaces

Where-ever possible avoid reading data into a []byte and passing it around.

Depending on the request you may end up reading megabytes (or more!) of data into
memory. This places huge pressure on the GC, which will increase the average latency
of your application.

Instead use io.Reader and io.Writer to construct processing pipelines to cap the
amount of memory in use per request.

For e�ciency, consider implementing io.ReaderFrom / io.WriterTo if you use a lot
of io.Copy. These interface are more e�cient and avoid copying memory into a
temporary bu�er.

io.Reader and io.Writer are not bu�ered

io.Reader and io.Writer implementations are not bu�ered.

This includes net.Conn, *os.File, and os.Stdout.

Use bufio.NewReader(r) and bufio.NewWriter(w) to get a bu�ered reader and
writer.

Don't forget to Flush or Close your bufio.Writer to �ush its bu�er to the underlying
Writer.

Timeouts, timeouts, timeouts

Never start an IO operating without knowing the maximum time it will take.

You need to set a timeout on every network request you make with SetDeadline,
SetReadDeadline, SetWriteDeadline.

// sendfile sends the contents of path to the client c.
func sendfile(c net.Conn, path string) error {
 r, err := os.Open(path)
 if err != nil {
 return err
 }
 defer r.Close()

 // Set the deadline to one minute from now.
 c.SetWriteDeadline(time.Now().Add(60 * time.Second))

 // Copy will send as much of r to the client as it can in 60 seconds.
 _, err = io.Copy(c, r)
 return err
}

Go uses e�cient polling, sometimes

The Go runtime handles network IO using an operating system polling mechanism.
Many waiting goroutines will be serviced by a single operating system thread.

However, for local �le IO, Go does not implement any IO polling. Each operation on a
*os.File consumes one operating system thread while in progress.

Heavy use of local �le IO can cause your program to spawn hundreds or thousands of
threads; possibly more than your operating system allows.

Your disk subsystem does not expect to be able to handle hundreds or thousands of
concurrent IO requests.

You need to limit the amount of blocking IO you issue. Use a pool of worker
goroutines, or a bu�ered channel as a semaphore.

Watch out for IO multipliers in your application

Most server programs take a request, do some processing, then return a result.

This sounds simple, but depending on the result it can let the client consume a large
(possibly unbounded) amount of resources on your server.

How many IO events does a single client request generate? Is it �xed, N+1, or linear
(reading the whole table to generate the last page of results).

If memory is slow, relatively speaking, then IO is so slow that you should avoid doing it
at all costs.

Most importantly avoid doing IO in the context of a request—don't make the user wait
for your disk subsystem to write to disk.

Minimise CGO

cgo allows Go programs to call into C libraries.

C code and Go code live in two di�erent universes, cgo traverses the boundary
between them.

This transition is not free and depending on where it exists in your code, the cost could
be substantial.

Do not call out to C code in the middle of a tight loop.

cgo calls are similar to blocking IO, they consume a thread during operation.

For best performance I recommend avoiding cgo in your applications.

Further reading: cgo is not Go. (http://dave.cheney.net/2016/01/18/cgo-is-not-go)

http://dave.cheney.net/2016/01/18/cgo-is-not-go

Conclusion

Always write the simplest code you can

Start with the simplest possible code.

Measure.

If performance is good, stop. You don't need to optimise everything, only the hottest
parts of your code.

As you application grows, or your tra�c pattern evolves, the performance hot spots
will change.

Don't leave complex code that is not performance critical, rewrite it with simpler
operations if the bottleneck moves elsewhere.

Always use the latest released version of Go

Old versions of Go will never get better. They will never get bug �xes or optimisations.

I'm sorry about Go 1.5 and Go 1.6 compile speed, believe me, nobody is happy with
the situation and we are working on improving it.

Always use the latest version of Go and you will get the best possible performance.

Further reading: Go 1.7 toolchain improvements (http://dave.cheney.net/2016/04/02/go-1-7-toolchain-improvements)

http://dave.cheney.net/2016/04/02/go-1-7-toolchain-improvements

In conclusion

Pro�le your code to identify the bottlenecks, do not guess.

Always write the simplest code you can, the compiler is optimised for normal code.

Shorter code is faster code; Go is not C++, do not expect the compiler to unravel
complicated abstractions.

Shorter code is smaller code; which is important for the CPU's cache.

Pay very close attention to allocations, avoid unnecessary allocation where possible.

Don't trade performance for reliability; I see little value in having a very fast server that
panics, deadlocks or OOMs on a regular basis.

Thank you

Dave Cheney
dave@cheney.net (mailto:dave@cheney.net)

http://dave.cheney.net/ (http://dave.cheney.net/)

@davecheney (http://twitter.com/davecheney)

mailto:dave@cheney.net
http://dave.cheney.net/
http://twitter.com/davecheney

