Badger: Fast Key-Value DB in Go

Manish R Jain, Dgraph Labs
Apr 14, 2018
Gopher China, Shanghai

Dgraph Labs

e Fast, Distributed graph database.
e Sparse data sets.

e Lots of relationships.

https://dgraph.io

What is Badger?

e Badger is an embedded key-value database, written in Go.

e Licensed under Apache 2.0.

go get github.com/dgraph-io/badger/...

Current Status

e Closing v2.0.
e (Close to 3500 Github starts.
e 42 contributors.

e Used by Dgraph, Go-IPFS, O-stor, Sandglass.

Serving 300TB (and growing) at Usenet Express

Basic Operations

Set a key-value

func set() error {

fmt.Println("\nRunning SET")

return db.Update(func(txn *badger.Txn) error {
if err := txn.Set([]byte("foo"), []byte("bar")); err != nil {

return err

}
fmt.Println("Set foo to bar")
return nil

)

Get a key-value

func get() error {
fmt.Println("\nRunning GET")
return db.View(func(txn *badger.Txn) error {
item, err := txn.Get([]byte("foo")) // handle err

if err !'= nil {
return err
}
val, err := item.Value() // handle err
if err != nil {
return err
}
fmt.Printf("The value is: %s\n", val)
return nil

)

Iterate key-values

func iterate() error {
fmt.Println("\nRunning ITERATE")
return db.View(func(txn *badger.Txn) error {

})

opts := badger.DefaultIteratorOptions
it := txn.NewlIterator(opts)
defer it.Close()

for it.Rewind(); it.Valid(); it.Next() {
k := it.Item().Key()
v, err := 1it.Item().Value() // handle err

if err !'= nil {
return err
}
fmt.Printf("key=%s, value=%s\n", k, v)
}
return nil

Run the code

func main() {
opt := badger.DefaultOptions
opt.Dir = "/tmp/db"
opt.ValueDir = opt.Dir
var err error
db, err = badger.Open(opt)
if err !'= nil {

panic(err)

}
defer db.Close()
fmt.Println("DB opened")
set()
get()
iterate()
fmt.Println("DB done")

} Run

Badger != replacement for Go map

Motivation and Outcome

Cgo is not Go

Some people, when confronted with a problem, think
“I know, I'll use cgo.”

Now they have two problems.

->Cgo is not Go, Dave Cheney

RocksDB

e Great write throughput.
e Okay read throughput.

Cons:

e Required Cgo.

BoltDB

e Pure Go.

e Great read throughput.
Cons:

e Bad write throughput.

Why build it?
e GO native key-value DB for Dgraph.

e No compromise in read-write performance.

e Avoid Cgo.

What did we spend?

e Spent a few months.

e Built with <1 full-time gopher.

e Aka, the power of Go!

What did we gain?

o Afaster key-value DB for Go.
e Ability to run Go profilers all the way down to disk.

e Clean Go code (no Q).

Launch Reception

e Within 12 hours of blog post release
e First page of HN for a day.
e 355 points, 96 comments.

e 1250 Github starsin 4 days.

Recruiters loved it!

e Got 3 different emails from 3 different recruiters...

Recruiters loved it!

e Forjobs in the same company.

3 CANDIDATES °*

memegenerator.net

Design

Two common Trees

o [SM trees

e B+ trees

LSM Trees

[T TT N (I T T . INEEE |
[T T T . QT T7 el (IITT7 e Level O

NSNS N

(LT T . LL [TTTT A Level !
NN/
T T T T T — o

Compaction continues creating fewer, larger and larger files

More levels

High write throughput

High read latency

Example: RocksDB

B+ Trees

Ll 2 /3| 4 ‘/ 5 | 6
v Vo Vo
d1 d2 d3 d4 d5 d6
Fewer levels
Low write throughput

Low read latency

Example: BoltDB

Badger is based on LSM trees.

LSM Trees

Memtable (64 MB)

LO (256 MB)

L1 (256 MB)

L2 (2.5 GB)

L3 (25 GB)

L3 (250 GB)

10x
>~ previous
level

Writes in LSM trees: Memtable to LO

Older————»

/"1:

New writes

/

SS Flush to disk

Older———»

Memtables

Level O

Writes in LSM trees: LO to L1

|:Empty

Level O

Level 1

Level O

Level 1

Merge Compact

-

Writes in LSM trees: Li to Li+1

Level | —
Overlapping
key-ranges
Level i+1
L
Merge Compact
Level i
Level i+l <«

What makes Badger unique?

e Based on WiscKey paper by Uni Wisconsin-Madison.

e Separates keys from values.

e Stores keys in LSM tree.

e Storesvalue in value log.

Write to Value Log

Value Log

e Write value, get pointer.

Key

Value

Value
Pointer

More keys per table

Value
Key Value Pointer
N
Typical
- LSM
Tree
<
>~ Badger

Arrangement in
LSM table

Smaller LSM tree

Y

Typical LSM tre

-~

Smaller LSM tree_

—

Badger

Typical Badger setup

LSM
Tree
in RAM

Value Log
in SSD

Advantages of smaller LSM tree

e Can be keptin RAM.
e Low read amplification (fewer lookups).
e Low write amplification (fewer compactions).

e o Number of keys.

Usenet Express

e Hundreds of terabytes of data.
e Few gigabytes of LSM tree.

Reads in Badger: LSM tree

Memtable (64 MB)

LO (256 MB)
L1 (256 MB)
L2 (2.5 GB)
L3 (25 GB)

L3 (250 GB)

Reads in Badger: Bloom Filters

Eliminated
by Bloom
Filters
Memtable (64 MB)

LO (256 MB)

L1 (256 MB) \

L2 (2.5 GB)

L3 (25 GB)

L3 (250 GB)

Reads in Badger: Value Log

Value
Pointer

/Value Log

Value

i

\.

e Once key found in LSM tree, read from value log.

Badger is FAST-er

Data Loading: Badger vs Go-RocksDB

Data Loading Performance

B RocksDB

I Badger
128

1024

Value Size (in bytes)

16384

0 2000 4000 6000

KV pairs in thousands per minute

e Asvalue size increases, Badger's becomes 11.7x faster.

Data Loading: Badger vs BoltDB

Data Loading Performance

B Imdb-go
B EoltDB
128
5952 B Badger
m
g
=]
S 1024
=
(75
g
©
-
16384
0 2000 4000 6000 8000

K\ pairs in thousands per minute (higher is better)

e 11x-22x faster than BoltDB on all value sizes.

Random Reads: Badger vs Go-RocksDB

Random Read Latency

B RocksDB
I Badger
128
F
=
-0
;_‘E_'_
@ 1024
N
o
o
=
2
16384
0 &0 120 180 240

Latency in microseconds / key lookup (shorter is betler)

e Random Get latency is 3.7x - 5.3x lower than RocksDB.

Random Reads: Badger vs BoltDB

Random Read Latency

B Imdb-go
B GBoltDB
128
B Badger
=
g
0
£ 1024 12.7
&
(%7
g
@
-
16384
0] 10 15

Latency in microseconds / key lookup (shorter is better)

e Random Get latency is slightly better or worse, depending on value size.

Various other benchmarks

e Range iteration latency, etc.
e Can be found on https://blog.dgraph.io/

e Benchmarking code is open sourced.

g|th u b .CO m/ d g I'a p h B | O/ ba d ge I- be NC h (https://github.com/dgraph-io/badger-bench)

https://github.com/dgraph-io/badger-bench

Features

Concurrent Transactions

e Badger uses Oracle to achieve concurrent lock-free transactions.

Transaction 2 Transaction 3
Key 2, Key 4 Key 3

Key 1 Commit Ts
Key 2 Commit Ts
Key 3 Commit Ts
Key 4 Commit Ts
Transaction 1 Timestamp Oracle

Key 1, Key 3

Concurrent Writes

e Batch up writes from muiltiple transactions.
e Amortize cost of disk write.

e No wait -> Smart Batching.

Smart Batching in Go

([J*request, 0, 10) closedCase:
(db.writeCh)
r “request r db.writeCh
{ reqs (reqs, r)

case r db.writeCh: }
case <-1lc.HasBeenClosed():

closedCase pendingCh {3}
} writeRequests(reqs)

{
A (regs, r) writeCase:
reqLen.Set(int64(len(regs))) writeRequests(reqs)
reqs ([J*request, 0, 10)
{ reqlLen.Set(0)

case r db.writeCh:
case pendingCh {}3:

writeCase
case <-lc.HasBeenClosed():

closedCase

}

Multi Version Concurrency Control

Time

SetK1@ T1
Get KI—» V1
SetKl @ T2

Get KI—» V2

lterate— V2, V1

e Badger stores multiple versions of the key.

e Provides direct access to the versions, via iterate.

Crash Resilience

e | SM Memtables can be lost to crashes.

e Can be recovered from value log on restart.

Value Log Garbage Collection

Why?
e Value log would keep growing with every Set.

e Older versions of keys can be deleted.

e Corresponding values can be deleted from value log.

Stage 1: Punch Holes (v2.0 in Linux)

LSM Tree Invalid
Valid
Key-Value | Key-Value | Key-Value | Key-Value
Punch Holes
Key-Value Key-Value
~ v,

Y

Sparse File: Hole

Stage 2: Move entries, Delete log

LSM Tree

Delete
Key-Value Key-Value | > after
move
-
Move N
Latest
Key-Value | Key-Value | Key-Value >-Va|ue
Log
-
Update

Dealing with Qu-err-key file systems.

Would a file delete reclaim space in the file
system?

Delete, no reclaim
e NO

if err := t.fd.Truncate(0); err != nil {
// This is very important to let the FS know
// that the file is deleted.
return err

e Truncate the file before deleting.

Would closing a file sync its contents to disk?

Close, no-sync
e No

if err := 1f.fd.Sync(); err != nil {
return errors.Wrapf(err, "Unable to sync value log: %q", 1f.path)

}
if err := 1f.fd.Close(); err != nil {

return errors.Wrapf(err, "Unable to close value log: %q", 1f.path)

b

e Explicitly sync file before closing.

Can a new synced file be lost?

Create, no-found
e Yes

f, err := 0s.0pen(dir)
if err !'= nil {
return errors.Wrapf(err, "While opening directory: %s.", dir)
}
err = f.Sync()
closeErr := f.Close()
if err != nil {
return errors.Wrapf(err, "While syncing directory: %s.", dir)

}

return errors.Wrapf(closeErr, "While closing directory: %s.", dir)

e Sync a directory just like you would sync afile.

Can a crash add garbage data to end of file?

Crash, no-clean

o Yes.

e Add checksums to know when to truncate a file.

Who should use Badger?

Don't use Badger if...

e You no Go! (C++, Java)
e You have a single-threaded sequential workload.
e You have a small, read-only workload.

e All your data can fit in memory easily.

Use Badger if...

e You Go!

e You want to avoid Cgo.

e You want a performant read-write workload.

e You access data concurrently (many goroutines accessing data).

You need 3-dimensional access.

Future Work

e Encryption at rest.

e Others? (tell us what you need)

Work on Badger and Dgraph. Come join us!

g |th u b .CO m/ d g I'a p h' | O/ ba d ge I (https://github.com/dgraph-io/badger)
g|th u b .CO m/ d g I'a p h' | O/ d g I'a p h (https://github.com/dgraph-io/dgraph)

Ca reers at D g I'a p h (https://dgraph.io/about.html)

https://github.com/dgraph-io/badger
https://github.com/dgraph-io/dgraph
https://dgraph.io/about.html

Talk to us on Wechat

e
[oR
@©
i
j*2)
[a)]
o
c
@
—
(]
(=]
©
@
[an]

Thank you

Manish R Jain, Dgraph Labs

Apr 14, 2018

Gopher China, Shanghai
manish@dgraph.io maitomanishedgraphio

@ Man | S h I’J d | N (http://twitter.com/manishrjain)

mailto:manish@dgraph.io
http://twitter.com/manishrjain

